Skip to main content

Snow Depth and Snow Water Equivalent Estimation

  • Chapter
  • First Online:
Theory and Practice of GNSS Reflectometry

Part of the book series: Navigation: Science and Technology ((NASTECH,volume 9))

  • 468 Accesses

Abstract

Variation in regional and global snowfall significantly affects the ecological and climate systems, which is usually used for policy-making in water resource management and disaster prevention. The amount of snowfall is measured by two different parameters, snow depth and snow water equivalent (SWE). SWE is defined as the product of snow depth and snow density, which is also equal to the depth of water after the snow completely melts without evaporation, penetration and run-off. In this chapter, the focus is on the use of GNSS-R for estimating snow depth and SWE. Four different methods of snow depth estimation are studied with details, while only one SWE estimation method is described, indicating more investigations are needed to enhance SWE estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrad P, Larson KM, Jones B (2005) Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors. In: Proceedings of ION GNSS, The Institute of Navigation, Long Beach, CA, September 2005, pp 2638–2648

    Google Scholar 

  2. Babic DI, Corzine SW (1992) Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J Quantum Electron 28(2):514–524

    Article  Google Scholar 

  3. Braasch MS, van Dierendonck AJ (1999) GPS receiver architectures and measurements. Proc IEEE 87(1):48–64

    Article  Google Scholar 

  4. Dressler KA, Fassnacht SR, Bales RC (2006) A comparison of snow telemetry and snow course measurements in the colorado river basin. J Hydrometeorol 7:705–712

    Article  Google Scholar 

  5. Henkel P, Koch F, Appel F, Bach H, Prasch M, Schmid L, Schweizer J, Mauser W (2018) Snow water equivalent of dry snow derived from GNSS carrier phases. IEEE Trans Geosci Remote Sens 56:3561–3572

    Article  Google Scholar 

  6. Hill DF, Burakowski EA, Crumley RL, Keon J, Hu JM, Arendt AA, Wikstrom J, Wolken GJ (2019) Converting snow depth to snow water equivalent using climatological variables. Cryosphere Discuss 13:1767–1784

    Article  Google Scholar 

  7. Hinrikus H (2006) Electromagnetic waves. Wiley Encyclopedia of Biomedical Engineering

    Google Scholar 

  8. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS—Global navigation satellite systems: GPS, GLONASS, Galileo and More, Springer Wien New York

    Google Scholar 

  9. JMA (2020, visited) http://www.jma.go.jp/jma/index.html

  10. Jonas T, Marty C, Magnusson J (2009) Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J Hydrol 378(1–2):161–167

    Article  Google Scholar 

  11. Larson KM, Gutmann ED, Zavorotny VU, Braun JJ, Nievinski FG (2009) Can we measure snow depth with gps receivers? Geophys Res Lett 36(17):L17502

    Article  Google Scholar 

  12. Li Y, Chang X, Yu K, Wang S, Li J (2019) Estimation of snow depth using pseudorange and carrier phase observations of GNSS single-frequency signal. GPS Solut 23(4):1–13

    Article  Google Scholar 

  13. Liu L, Amin MG (2007) Comparison of average performance of GPS discriminators in multipath. In: Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP), Honolulu, HI, USA, 15–20 April 2007, pp 1285–1288

    Google Scholar 

  14. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39:447–462

    Article  Google Scholar 

  15. McCreight JL, Small EE, Larson KM (2015) Snow depth, density, and SWE estimates derived from GPS reflection data: Validation in the western U.S. Water Resour Res 50(8):6892–6909

    Google Scholar 

  16. Mizukami N, Perica S (2008) Spatiotemporal characteristics of snowpack density in the mountainous regions of the western United States. Journal of Hydrometeorology 9(6):1416–1426

    Article  Google Scholar 

  17. Nievinski FG, Larson KM (2014) Inverse modeling of GPS multipath for snow depth estimation—Part II: Application and validation. IEEE Trans Geosci Remote Sens 52(10):6564–6573

    Article  Google Scholar 

  18. Ozeki M, Heki K (2012) GPS snow depth meter with geometry-free linear combinations of carrier phases. J Geodesy 86(3):209–219

    Article  Google Scholar 

  19. Pugliano G, Robustelli U, Rossi F, Santamaria R (2016) A new method for specular and diffuse pseudorange multipath error extraction using wavelet analysis. GPS Solutions 20(3):499–508

    Article  Google Scholar 

  20. Scargle JD (1982) Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–852

    Article  Google Scholar 

  21. Serreze MC, Clark MP, Armstrong RL, Mcginnis DL, Pulwarty RS (1999) Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour Res 35(7):2145–2160

    Article  Google Scholar 

  22. Stein J, Laberge G, Lévesque D (1997) Monitoring the dry density and the liquid water content of snow using time domain reflectometry (tdr). Cold Reg Sci Technol 25(2):123–136

    Article  Google Scholar 

  23. Steiner L, Meindl M, Geiger A (2019) Characteristics and limitations of GPS L1 observations from submerged antennas. J Geodesy 93:267–280

    Article  Google Scholar 

  24. Tabibi S, Nievinski FG, Dam TV (2017) Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. IEEE Trans Geosci Remote Sens 55(7):3773–3785

    Article  Google Scholar 

  25. Tiuri ME, Sihvola A, Nyfors E, Hallikaiken M (1984) The complex dielectric constant of snow at microwave frequencies. IEEE J Oceanic Eng 9(5):377–382

    Article  Google Scholar 

  26. Vander Plas JT, Connolly AJ, Ivezic Z, Gray A (2012) Introduction to astroML: Machine learning for astrophysics. In: Proceedings of Conference on Intelligent Data Understanding (CIDU), Boulder, Colorado, USA, 24–26 October 2012, pp 47–54

    Google Scholar 

  27. Vázquez GE, Bennett R, Spinler J (2013) Assessment of pseudorange multipath at continuous GPS stations in Mexico. Positioning 4(3):253–265

    Article  Google Scholar 

  28. Yu K, Ban W, Zhang X, Yu X (2015) Snow depth estimation based on multipath phase combination of GPS triple-frequency signals. IEEE Trans Geosci Remote Sens 53(9):5100–5109

    Article  Google Scholar 

  29. Yu K, Li Y, Chang X (2018) Snow depth estimation based on combination of pseudorange and carrier phase of GNSS dual-frequency signals. IEEE Trans Geosci Remote Sens 57(3):1817–1828

    Article  Google Scholar 

  30. Yu K, Wang S, Li Y, Chang X, Li J (2019) Snow depth estimation with GNSS-R dual receiver observation. Remote Sensing 11(17):2056

    Google Scholar 

  31. Yu K, Li Y, Jin T, Chang X, Wang Q, Li J (2020) GNSS-R-based snow water equivalent estimation with empirical modeling and enhanced SNR-based snow depth estimation. Remote Sensing 12(23):3905

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kegen Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, K. (2021). Snow Depth and Snow Water Equivalent Estimation. In: Theory and Practice of GNSS Reflectometry. Navigation: Science and Technology, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-16-0411-9_8

Download citation

Publish with us

Policies and ethics