Skip to main content

Synchronization and Beta Oscillations in Globus Pallidus: Role of the Striatum

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (VII) (ICCN2019 2019)

Abstract

Striatum, the main entrance of cortical afferents to the basal ganglia, plays an important role in the Parkinson’s disease, and it is often overlooked in the study of Parkinson’s disease. In this paper, we add globus pallidus externus (GPe), globus pallidus internus (GPi), and subthalamic nucleus (STN) nuclei on the basis of the striatum-inhibiting microcirculation and build a striatum-GP-STN model. Numerical analysis results show that increasing the synaptic connections of medium spiny neurons (MSNs) to GPe and GPi neurons results in a pathological synchronization of GPe and GPi neurons, and the power spectral density indicates a significant increase in beta-band energy. This is likely to be a potential source of beta-band in the Parkinson’s disease. The expansion of the striatum-GP-STN model also provides new ideas for studying Parkinson’s disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cabessa, J., & Villa, A. E. P. (2018). Attractor dynamics of a Boolean model of a brain circuit controlled by multiple parameters. Chaos, 28, 106318.

    Article  Google Scholar 

  • Damodaran, S., Evans, R. C., & Blackwell, K. T. (2014). Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of Neurophysiology, 111, 836–848.

    Article  Google Scholar 

  • Damodaran, S., Cressman, J. R., Jedrzejewski-Szmek, Z., & Blackwell, K. T. (2015). Desynchronization of fast-spiking interneurons reduces \(\upbeta \)-band oscillations and imbalance in firing in the dopamine-depleted striatum. Journal of Neuroscience, 35, 1149–1159.

    Article  Google Scholar 

  • Fan, D., & Wang, Q. (2015). Improving desynchronization of parkinsonian neuronal network via triplet-structure coordinated reset stimulation. Journal of Theoretical Biology, 370, 157–170.

    Article  Google Scholar 

  • Gittis, A. H., et al. (2011). Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron, 71, 858–868.

    Article  CAS  Google Scholar 

  • Humphries, M. D., Wood, R., & Gurney, K. (2009). Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural Networks, 22, 1174–1188.

    Article  Google Scholar 

  • McCarthy, M. M., et al. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences, 180, 11620–11625.

    Article  Google Scholar 

  • Melzer, S., Gil, M., Koser, D. E., Michael, M., Huang, K. W., & Monyer, H. (2017). Distinct corticostriatal GABAergic neurons modulate striatal output neurons and motor activity. Cell Reports, 19, 1045–1055.

    Article  CAS  Google Scholar 

  • Nomura, M., Fukai, T., & Aoyagi, T. (2003). Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. In International Conference on Neural Information Processing. IEEE.

    Google Scholar 

  • Pittman-Polletta, B. R., Quach, A., Mohammed, A. I., Romano, M., Kondabolu, K., Kopell, N. J., et al. (2018). Striatal cholinergic receptor activation causes a rapid, selective and state-dependent rise in cortico-striatal activity. European Journal of Neuroscience, 48, 2857–2868.

    Article  Google Scholar 

  • Saunders, A., Oldenburg, I. A., Berezovskii, V. K., Johnson, C. A., Kingery, N. D., Elliott, H. L., et al. (2015). A direct GABAergic output from the basal ganglia to frontal cortex. Nature, 521, 85–89.

    Article  CAS  Google Scholar 

  • So, R. Q., Kent, A. R., & Grill, W. M. (2012). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: A computational modeling study. Journal of Computational Neuroscience, 32, 499–519.

    Article  Google Scholar 

  • van Albada, S. J., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. I. Journal of Theoretical Biology, 257, 642–663.

    Article  Google Scholar 

  • Wu, Z., Guo, A., & Fu, X. (2017). Generation of low-gamma oscillations in a GABAergic network model of the striatum. Neural Networks, 95, 72–90.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (Grants 11572015, 11772019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Y., Liang, K., Wang, Q. (2021). Synchronization and Beta Oscillations in Globus Pallidus: Role of the Striatum. In: Lintas, A., Enrico, P., Pan, X., Wang, R., Villa, A. (eds) Advances in Cognitive Neurodynamics (VII). ICCN2019 2019. Advances in Cognitive Neurodynamics. Springer, Singapore. https://doi.org/10.1007/978-981-16-0317-4_19

Download citation

Publish with us

Policies and ethics