Skip to main content

Event-Related Potentials and Fast Optical Imaging of Cortical Activity During an Auditory Oddball Task

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (VII) (ICCN2019 2019)

Abstract

Event-related potentials (ERP) have been repeatedly used to study the spatiotemporal dynamics of the attentional response in the well-known oddball paradigm. We combined electroencephalography (EEG) with frequency-domain near-infrared spectroscopy (fNIRS) of the frontal cortex to measure neuronal activity with a high spatial and temporal resolution. The aim of this study was to determine the precise chronology of event-related optical signals (EROS) and their consistency with ERPs. In agreement with previous studies, the oddball condition produced larger waveforms for rare (1500  Hz pure tone) with respect to frequent stimuli (1000  Hz), with N1, P2, N2, P3a, and P3b components. At a latency corresponding to the mismatch negativity/N2 wave component, EROS showed the organization of a complex activity in a functional network of frontal areas, with rare tones activating the left premotor dorsal cortex and the left inferior frontal cortex and decreasing the activity of the right superior frontal gyrus. Rare tones elicited also a strong N500 (N400-like) wave component that EROS contributed to localize at the level of the right medial frontal gyrus by EROS. The simultaneous recording of fNIRS and EEG measurements with high temporal accuracy over the human prefrontal cortex supports the potential for this approach to unravel the functional cortical network involved in cognitive processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahveninen, J., Jääskeläinen, I. P., Raij, T., Bonmassar, G., Devore, S., Hämäläinen, M., et al. (2006). Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci U S A, 103(39), 14608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander, J. E., Polich, J., Bloom, F. E., Bauer, L. O., Kuperman, S., Rohrbaugh, J., et al. (1994). P300 from an auditory oddball task: inter-laboratory consistency. Int J Psychophysiol, 17(1), 35–46.

    Article  CAS  PubMed  Google Scholar 

  • Apelbaum, J., Silva, E. E., Frick, O., & Segundo, J. P. (1960). Specificity and biasing of arousal reaction habituation. Electroencephalogr Clin Neurophysiol, 12, 829–840.

    Article  CAS  PubMed  Google Scholar 

  • Ardila, A., Bernal, B., & Rosselli, M. (2016). How Localized are Language Brain Areas? A Review of Brodmann Areas Involvement in Oral Language. Arch Clin Neuropsychol, 31(1), 112–22.

    Article  PubMed  Google Scholar 

  • Baniqued, P. L., Low, K. A., Fabiani, M., & Gratton, G. (2013). Frontoparietal traffic signals: a fast optical imaging study of preparatory dynamics in response mode switching. J Cogn Neurosci, 25(6), 887–902.

    Article  PubMed  Google Scholar 

  • Bezgin, G., Rybacki, K., van Opstal, A. J., Bakker, R., Shen, K., Vakorin, V. A., et al. (2014). Auditory-prefrontal axonal connectivity in the macaque cortex: quantitative assessment of processing streams. Brain Lang, 135, 73–84.

    Article  PubMed  Google Scholar 

  • Blumstein, D. T. (2016). Habituation and sensitization: new thoughts about old ideas. Anim Behav, 120, 255–262.

    Article  Google Scholar 

  • Brancucci, A., Lugli, V., Perrucci, M. G., Del Gratta, C., & Tommasi, L. (2016). A frontal but not parietal neural correlate of auditory consciousness. Brain Struct Funct, 221(1), 463–72.

    Article  PubMed  Google Scholar 

  • Chance, B., Zhuang, Z., UnAh, C., Alter, C., & Lipton, L. (1993). Cognition-activated low-frequency modulation of light absorption in human brain. Proc Natl Acad Sci U S A, 90(8), 3770–3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, T.-C., Liang, K.-C., Chen, J.-H., Hsieh, C.-H., & Huang, Y.-A. (2013). Brain deactivation in the outperformance in bimodal tasks: an FMRI study. PLoS One, 8(10), e77408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codispoti, M., Ferrari, V., Junghöfer, M., & Schupp, H. T. (2006). The categorization of natural scenes: brain attention networks revealed by dense sensor ERPs. Neuroimage, 32(2), 583–91.

    Article  PubMed  Google Scholar 

  • Collette, F., Olivier, L., Van der Linden, M., Laureys, S., Delfiore, G., Luxen, A., et al. (2005). Involvement of both prefrontal and inferior parietal cortex in dual-task performance. Brain Res Cogn Brain Res, 24(2), 237–51.

    Article  PubMed  Google Scholar 

  • Crottaz-Herbette, S., & Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J Cogn Neurosci, 18(5), 766–80.

    Article  CAS  PubMed  Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 134(1), 9–21.

    Article  PubMed  Google Scholar 

  • Delpy, D. T., & Cope, M. (1997). Quantification in tissue near-infrared spectroscopy. Philos Trans R Soc Lond B Biol Sci, 352(1354), 649–659.

    Article  CAS  PubMed Central  Google Scholar 

  • Eriksson, J. L., & Villa, A. E. P. (2005). Event-related potentials in an auditory oddball situation in the rat. BioSystems, 79(1–3), 207–212.

    Article  PubMed  Google Scholar 

  • Esposito, F., Mulert, C., & Goebel, R. (2009). Combined distributed source and single-trial EEG-fMRI modeling: application to effortful decision making processes. Neuroimage, 47(1), 112–21.

    Article  PubMed  Google Scholar 

  • Fabiani, M., & Friedman, D. (1995). Changes in brain activity patterns in aging: the novelty oddball. Psychophysiology, 32(6), 579–94.

    Article  CAS  PubMed  Google Scholar 

  • Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., Dronkers, N. F., Knight, R. T., et al. (2015). Redefining the role of Broca’s area in speech. Proc Natl Acad Sci U S A, 112(9), 2871–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard, A. W. (1976). Effects of warning-signal modality on the contingent negative variation (CNV). Biol Psychol, 4(2), 139–54.

    Article  CAS  PubMed  Google Scholar 

  • Goodin, D. S., Squires, K. C., Henderson, B. H., & Starr, A. (1978). An early event-related cortical potential. Psychophysiology, 15(4), 360–365.

    Article  CAS  PubMed  Google Scholar 

  • Gratton, E., Fantini, S., Franceschini, M. A., Gratton, G., & Fabiani, M. (1997). Measurements of scattering and absorption changes in muscle and brain. Philos Trans R Soc Lond B Biol Sci, 352(1354), 727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratton, G. (2000). "Opt-cont" and "Opt-3D": A software suite for the analysis and 3D reconstruction of the event-related optical signal (EROS). Psychophysiology, 37, S44.

    Google Scholar 

  • Gratton, G., Brumback, C. R., Gordon, B. A., Pearson, M. A., Low, K. A., & Fabiani, M. (2006). Effects of measurement method, wavelength, and source-detector distance on the fast optical signal. NeuroImage, 32(4), 1576–1590.

    Article  PubMed  Google Scholar 

  • Gratton, G., Cooper, P., Fabiani, M., Carter, C. S., & Karayanidis, F. (2018). Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future. Psychophysiology, 55(3), e13016.

    Article  Google Scholar 

  • Gratton, G., & Corballis, P. M. (1995). Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal. Psychophysiology, 32(3), 292–299.

    Article  CAS  PubMed  Google Scholar 

  • Gratton, G., Corballis, P. M., Cho, E., Fabiani, M., & Hood, D. C. (1995). Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation. Psychophysiology, 32(5), 505–509.

    Article  CAS  PubMed  Google Scholar 

  • Gratton, G., & Fabiani, M. (1998). Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity. Psychon Bull Rev, 5(4), 535–563.

    Article  Google Scholar 

  • Gratton, G., & Fabiani, M. (2001). Shedding light on brain function: the event-related optical signal. Trends Cogn Sci, 5(8), 357–363.

    Article  CAS  PubMed  Google Scholar 

  • Gratton, G., & Fabiani, M. (2010). Fast optical imaging of human brain function. Front Hum Neurosci, 4, e00052.

    Google Scholar 

  • Harper, J., Malone, S. M., & Bernat, E. M. (2014). Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task. Clin Neurophysiol, 125(1), 124–132.

    Article  PubMed  Google Scholar 

  • Horovitz, S. G., Skudlarski, P., & Gore, J. C. (2002). Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magn Reson Imaging, 20(4), 319–25.

    Article  PubMed  Google Scholar 

  • Jausovec, N., & Jausovec, K. (2009). Do women see things differently than men do? Neuroimage, 45(1), 198–207.

    Article  PubMed  Google Scholar 

  • Jeong, E., Ryu, H., Jo, G., & Kim, J. (2018). Cognitive Load Changes during Music Listening and its Implication in Earcon Design in Public Environments: An fNIRS Study. Int J Environ Res Public Health, 15(10), e2075.

    Article  PubMed  Google Scholar 

  • Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proc Natl Acad Sci U S A, 95(14), 8410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennan, R. P., Horovitz, S. G., Maki, A., Yamashita, Y., Koizumi, H., & Gore, J. C. (2002). Simultaneous recording of event-related auditory oddball response using transcranial near infrared optical topography and surface EEG. Neuroimage, 16(3), 587–592.

    Article  PubMed  Google Scholar 

  • Kiehl, K. A., Bates, A. T., Laurens, K. R., Hare, R. D., & Liddle, P. F. (2006). Brain potentials implicate temporal lobe abnormalities in criminal psychopaths. J Abnorm Psychol, 115(3), 443–53.

    Article  PubMed  Google Scholar 

  • Kubota, M., Inouchi, M., Dan, I., Tsuzuki, D., Ishikawa, A., & Scovel, T. (2008). Fast (100–175 ms) components elicited bilaterally by language production as measured by three-wavelength optical imaging. Brain Res, 1226, 124–33.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, U., Guleria, A., & Khetrapal, C. L. (2015). Neuro-cognitive aspects of "OM" sound/syllable perception: A functional neuroimaging study. Cogn Emot, 29(3), 432–41.

    Article  CAS  PubMed  Google Scholar 

  • Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends Cogn Sci, 4(12), 463–470.

    Article  CAS  PubMed  Google Scholar 

  • Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307(5947), 161–163.

    Article  CAS  PubMed  Google Scholar 

  • Lacadie, C. M., Fulbright, R. K., Rajeevan, N., Constable, R. T., & Papademetris, X. (2008). More accurate Talairach coordinates for neuroimaging using non-linear registration. Neuroimage, 42(2), 717–25.

    Article  PubMed  Google Scholar 

  • Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nat Rev Neurosci, 9(12), 920–33.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., & Kim, S. J. (2010). Spectrum measurement of fast optical signal of neural activity in brain tissue and its theoretical origin. Neuroimage, 51(2), 713–22.

    Article  PubMed  Google Scholar 

  • Levitin, D. J., & Tirovolas, A. K. (2009). Current Advances in the Cognitive Neuroscience of Music. Ann N Y Acad Sci, 1156(1), 211–231.

    Article  PubMed  Google Scholar 

  • Linden, D. E., Prvulovic, D., Formisano, E., Völlinger, M., Zanella, F. E., Goebel, R., et al. (1999). The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex, 9(8), 815–23.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Iwanaga, K., & Koda, S. (2011). Circulatory and central nervous system responses to different types of mental stress. Ind Health, 49(3), 265–73.

    Article  CAS  PubMed  Google Scholar 

  • Low, K. A., Leaver, E., Kramer, A. F., Fabiani, M., & Gratton, G. (2006). Fast optical imaging of frontal cortex during active and passive oddball tasks. Psychophysiology, 43(2), 127–36.

    Article  PubMed  Google Scholar 

  • Low, K. A., Leaver, E. E., Kramer, A. F., Fabiani, M., & Gratton, G. (2009). Share or compete? Load-dependent recruitment of prefrontal cortex during dual-task performance. Psychophysiology, 46(5), 1069–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maclin, E. L., Gratton, G., & Fabiani, M. (2003). Optimum filtering for EROS measurements. Psychophysiology, 40(4), 542–7.

    Article  PubMed  Google Scholar 

  • Mangalathu-Arumana, J., Beardsley, S. A., & Liebenthal, E. (2012). Within-subject joint independent component analysis of simultaneous fMRI/ERP in an auditory oddball paradigm. Neuroimage, 60(4), 2247–2257.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, G., Luby, M., Gore, J., & Goldman-Rakic, P. (1997). Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional mri. J Neurophysiol, 77(3), 1630–1634.

    Article  CAS  PubMed  Google Scholar 

  • Medvedev, A. V., Kainerstorfer, J., Borisov, S. V., Barbour, R. L., & VanMeter, J. (2008). Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis. Brain Res, 1236, 145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medvedev, A. V., Kainerstorfer, J. M., Borisov, S. V., Gandjbakhche, A. H., & Vanmeter, J. (2010). "seeing" electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal. J Biomed Opt, 15(6), 061702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menon, V., Ford, J. M., Lim, K. O., Glover, G. H., & Pfefferbaum, A. (1997). Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport, 8(14), 3029–3037.

    Article  CAS  PubMed  Google Scholar 

  • Michalewski, H. J., Prasher, D. K., & Starr, A. (1986). Latency variability and temporal interrelationships of the auditory event-related potentials (N1, P2, N2, and P3) in normal subjects. Electroencephalogr Clin Neurophysiol, 65(1), 59–71.

    Article  CAS  PubMed  Google Scholar 

  • Moisa, M., Siebner, H. R., Pohmann, R., & Thielscher, A. (2012). Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex. J Neurosci, 32(21), 7244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár, M. (1994). On the origin of the P3 event-related potential component. Int J Psychophysiol, 17(2), 129–44.

    Article  PubMed  Google Scholar 

  • Monte-Ordoño, J., & Toro, J. M. (2017). Different ERP profiles for learning rules over consonants and vowels. Neuropsychologia, 97, 104–111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci, 13, 201–288.

    Article  Google Scholar 

  • Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 375–425.

    Article  PubMed  Google Scholar 

  • Nunez, P. (1995). Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York, NY., xii, 708 pages.

    Google Scholar 

  • Okada, E., Firbank, M., Schweiger, M., Arridge, S. R., Cope, M., & Delpy, D. T. (1997). Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl Opt, 36(1), 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Opitz, B., Mecklinger, A., Von Cramon, D. Y., & Kruggel, F. (1999). Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology, 36(1), 142–7.

    Article  CAS  PubMed  Google Scholar 

  • Plakke, B., & Romanski, L. M. (2016). Neural circuits in auditory and audiovisual memory. Brain Res, 1640, 278–88.

    Article  CAS  PubMed  Google Scholar 

  • Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol, 118(10), 2128–2148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. (2000). Integration of diverse information in working memory within the frontal lobe. Nat Neurosci, 3(1), 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Press, C., Weiskopf, N., & Kilner, J. M. (2012). Dissociable roles of human inferior frontal gyrus during action execution and observation. Neuroimage, 60(3), 1671–7.

    Article  PubMed  Google Scholar 

  • Proulx, N., Samadani, A.-A., & Chau, T. (2018). Quantifying fast optical signal and event-related potential relationships during a visual oddball task. Neuroimage, 178, 119–128.

    Article  PubMed  Google Scholar 

  • Rinne, T., Gratton, G., Fabiani, M., Cowan, N., Maclin, E., Stinard, A., et al. (1999). Scalp-recorded optical signals make sound processing in the auditory cortex visible? Neuroimage, 10(5), 620–4.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, S., Hartmüller, T., Vignotto, M., & Obrig, H. (2013). Electrophysiological evidence for modulation of lexical processing after repetitive exposure to foreign phonotactic rules. Brain Lang, 127(3), 404–14.

    Article  PubMed  Google Scholar 

  • Ruusuvirta, T., Huotilainen, M., & Näätänen, R. (2007). Preperceptual human number sense for sequential sounds, as revealed by mismatch negativity brain response? Cereb Cortex, 17(12), 2777–9.

    Article  PubMed  Google Scholar 

  • Ruusuvirta, T., Korhonen, T., Arikoski, J., & Kivirikko, K. (1996). ERPs to pitch changes: a result of reduced responses to standard tones in rabbits. Neuroreport, 7(2), 413–416.

    Article  CAS  PubMed  Google Scholar 

  • Schaal, N. K., Kretschmer, M., Keitel, A., Krause, V., Pfeifer, J., & Pollok, B. (2017). The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities. Front Neurosci, 11, e00677.

    Article  Google Scholar 

  • Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J., Wolf, U., et al. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 85, 6–27.

    Article  PubMed  Google Scholar 

  • Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol, 38(4), 387–401.

    Article  CAS  PubMed  Google Scholar 

  • Stadler, W., Ott, D. V. M., Springer, A., Schubotz, R. I., Schütz-Bosbach, S., & Prinz, W. (2012). Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Front Hum Neurosci, 6, e00020.

    Article  Google Scholar 

  • Steinbrink, J., Kempf, F. C. D., Villringer, A., & Obrig, H. (2005). The fast optical signal-robust or elusive when non-invasively measured in the human adult? Neuroimage, 26(4), 996–1008.

    Article  PubMed  Google Scholar 

  • Steinbrink, J., Kohl, M., Obrig, H., Curio, G., Syré, F., Thomas, F., et al. (2000). Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head. Neurosci Lett, 291(2), 105–8.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, M. C., Calhoun, V. D., & Kiehl, K. A. (2005). Hemispheric differences in hemodynamics elicited by auditory oddball stimuli. Neuroimage, 26(3), 782–792.

    Article  PubMed  Google Scholar 

  • Strait, M., & Scheutz, M. (2014). What we can and cannot (yet) do with functional near infrared spectroscopy. Front Neurosci, 8, e00117.

    Article  Google Scholar 

  • Sun, F., Hoshi-Shiba, R., Abla, D., & Okanoya, K. (2012). Neural correlates of abstract rule learning: an event-related potential study. Neuropsychologia, 50(11), 2617–24.

    Article  PubMed  Google Scholar 

  • Syré, F., Obrig, H., Steinbrink, J., Kohl, M., Wenzel, R., & Villringer, A. (2003). Are VEP correlated fast optical signals detectable in the human adult by non-invasive nearinfrared spectroscopy (NIRS)? Adv Exp Med Biol, 530, 421–31.

    Article  PubMed  Google Scholar 

  • Talairach, J. and Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Georg Thieme Verlag.

    Google Scholar 

  • Thompson, R. F. (2009). Habituation: a history. Neurobiol Learn Mem, 92(2), 127–134.

    Article  PubMed  Google Scholar 

  • Tian, X., Zarate, J. M., & Poeppel, D. (2016). Mental imagery of speech implicates two mechanisms of perceptual reactivation. Cortex, 77, 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torricelli, A., Contini, D., Pifferi, A., Caffini, M., Re, R., Zucchelli, L., et al. (2014). Time domain functional nirs imaging for human brain mapping. Neuroimage, 85, 28–50.

    Article  PubMed  Google Scholar 

  • Tse, C.-Y., & Penney, T. B. (2008). On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance. Neuroimage, 41(4), 1462–70.

    Article  PubMed  Google Scholar 

  • Tse, C.-Y., Rinne, T., Ng, K. K., & Penney, T. B. (2013). The functional role of the frontal cortex in pre-attentive auditory change detection. Neuroimage, 83, 870–879.

    Article  PubMed  Google Scholar 

  • Tse, C.-Y., Tien, K.-R., & Penney, T. B. (2006). Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection. Neuroimage, 29(1), 314–20.

    Article  PubMed  Google Scholar 

  • Tseng, Y.-L., Lu, C.-F., Wu, S.-M., Shimada, S., Huang, T., & Lu, G.-Y. (2018). A Functional Near-Infrared Spectroscopy Study of State Anxiety and Auditory Working Memory Load. Front Hum Neurosci, 12, e00313.

    Article  Google Scholar 

  • Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behav Brain Sci, 11(3), 343–356.

    Article  Google Scholar 

  • Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci, 20(10), 435–42.

    Article  CAS  PubMed  Google Scholar 

  • Walz, J. M., Goldman, R. I., Carapezza, M., Muraskin, J., Brown, T. R., & Sajda, P. (2013). Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. J Neurosci, 33(49), 19212–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf, M., Wolf, U., Choi, J. H., Gupta, R., Safonova, L. P., Paunescu, L. A., et al. (2002). Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex. Neuroimage, 17(4), 1868–75.

    Article  PubMed  Google Scholar 

  • World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the Swiss National Science Foundation, grant no. POLAP1_178329 for MEJ and grant no. IZSEZ0_183401 for RK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manon E. Jaquerod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaquerod, M.E., Knight, R., Villa, A.E.P., Lintas, A. (2021). Event-Related Potentials and Fast Optical Imaging of Cortical Activity During an Auditory Oddball Task. In: Lintas, A., Enrico, P., Pan, X., Wang, R., Villa, A. (eds) Advances in Cognitive Neurodynamics (VII). ICCN2019 2019. Advances in Cognitive Neurodynamics. Springer, Singapore. https://doi.org/10.1007/978-981-16-0317-4_18

Download citation

Publish with us

Policies and ethics