Skip to main content

Event-Triggered Adaptive Disturbance Rejection for Artificial Pancreas

  • Chapter
  • First Online:
Event-Triggered Active Disturbance Rejection Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 356))

  • 462 Accesses

Abstract

In this chapter, we show how the ideas of ET-ADRC can be generalized and employed to achieve closed-loop glucose regulation for patients with type 1 diabetes mellitus (T1DM). In particular, we diverge a little bit from our previous ET-ADRC design approaches and show how a different controller with scenario-dependent adaptability can be designed through event-based parameter adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atlas, E., Nimri, R., Miller, S., Grunberg, E.A., Phillip, M.: Md-logic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diabetes Care 33(5), 1072–1076 (2010)

    Article  Google Scholar 

  2. Bequette, B.W.: Algorithms for a closed-loop artificial pancreas: the case for model predictive control. J. Diabetes Sci. Technol. 7(6), 1632–1643 (2013)

    Article  Google Scholar 

  3. Boiroux, D., Duun-Henriksen, A.K., Schmidt, S., Norgaard, K., Poulsen, N.K., Madsen, H., Jorgensen, J.B.: Adaptive control in an artificial pancreas for people with type 1 diabetes. Control Eng. Pract. 58, 332–342 (2017)

    Article  Google Scholar 

  4. Cameron, F., Niemeyer, G., Bequette, B.W.: Extended multiple model prediction with application to blood glucose regulation. J. Process Control 22(8), 1422–1432 (2012)

    Article  Google Scholar 

  5. Colmegna, P.H., Sanchez-Pena, R.S., Gondhalekar, R., Dassau, E., Doyle III, F.J.: Switched LPV glucose control in type 1 diabetes. IEEE Trans. Biomed. Eng. 63(6), 1192–1200 (2016)

    Article  Google Scholar 

  6. Colmegna, P.H., Sanchez-Pena, R.S., Gondhalekar, R., Dassau, E., Doyle III, F.J.: Reducing glucose variability due to meals and postprandial exercise in T1DM using switched LPV control: in silico studies. J. Diabetes Sci. Technol. 10(3), 744–753 (2016)

    Article  Google Scholar 

  7. Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C.: The UVA/PADOVA type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 8(1), 26–34 (2014)

    Article  Google Scholar 

  8. Dassau, E., Pinsker, J., Kudva, Y., Brown, S., R., G., C., D., Patek, S., Schiavon, M., Dadlani, V., Dasanayake, I., Church, M.M., Carter, R.E., Bevier, W.C., Huyett, L.M., Hughes, J., Anderson, S., Lv, D., Schertz, E., Emory, E., McCrady-Spitzer, S.K., Jean, T., Bradley, P.K., Hinshaw, L., Sanz, A.J.L., Basu, A., Kovatchev, B., Cobelli, C., Doyle III, F.J.: Twelve week 24/7 ambulatory artificial pancreas with weekly adaptation of insulin delivery settings: effect on hemoglobin A1c and hypoglycemia. Diabetes Care 40(12), 1719–1726 (2017)

    Google Scholar 

  9. Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993(329), 977–986 (1993)

    Google Scholar 

  10. Doyle III, F.J., Huyett, L.M., Lee, J.B., Zisser, H.C., Dassau, E.: Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37(5), 1191–1197 (2014)

    Article  Google Scholar 

  11. Garg, S.K., Weinzimer, S.A., Tamborlane, W.V., Buckingham, B.A., Bode, B.W., Bailey, T.S., Brazg, R.L., Ilany, J., Slover, R.H., Anderson, S.M., Bergenstal, R.M., Grosman, B., Roy, A., Cordero, T.L., Shin, J., Lee, S.W., Kaufman, F.R.: Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol. Ther. 19(3), 155–163 (2017)

    Article  Google Scholar 

  12. Gondhalekar, R., Dassau, E., Doyle III, F.J.: Periodic zone-mpc with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica 71, 237–246 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gondhalekar, R., Dassau, E., Doyle III, F.J.: Velocity-weighting & velocity-penalty MPC of an artificial pancreas: improved safety & performance. Automatica 91, 105–117 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gopakumaran, B., Duman, H.M., Overholser, D.P., Federiuk, I.F., Quinn, M.J., Wood, M.D., Ward, W.K.: A novel insulin delivery algorithm in rats with type 1 diabetes: the fading memory proportional-derivative method. Artif. Organs 29(8), 599–607 (2005)

    Article  Google Scholar 

  15. Grosman, B., Dassau, E., Zisser, H., Jovanovic, L., Doyle III, F.J.: Multi-zone-MPC: clinical inspired control algorithm for the artificial pancreas. In: 18th IFAC World Congress, pp. 7120 – 7125 (2011)

    Google Scholar 

  16. Guo, B., Han, J., Xi, F.: Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation. Int. J. Syst. Sci. 33(5), 351–358 (2002)

    Article  MathSciNet  Google Scholar 

  17. Guo, B., Zhao, Z.: On convergence of tracking differentiator. Int. J. Control 84(4), 693–701 (2011)

    Article  MathSciNet  Google Scholar 

  18. Haidar, A.: The artificial pancreas: how closed-loop control is revolutionizing diabetes. IEEE Control Syst. 36(5), 28–47 (2016)

    Article  MathSciNet  Google Scholar 

  19. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  20. van Heusden, K., Dassau, E., Zisser, H.C., Seborg, D.E., Doyle III, F.J.: Control-relevant models for glucose control using a priori patient characteristics. IEEE Trans. Biomed. Eng. 59(7), 1839–1849 (2012)

    Article  Google Scholar 

  21. Hovorka, R., Allen, J.M., Elleri, D., Chassin, L.J., Harris, J., Xing, D., Kollman, C., Hovorka, T., Larsen, A.M.F., Nodale, M., Palma, A.D., Wilinska, M.E., Acerini, C.L., Dunger, D.B.: Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. The Lancet 375(9716), 743–751 (2010)

    Article  Google Scholar 

  22. Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T., Wilinska, M.E.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25(4), 905–920 (2004)

    Article  Google Scholar 

  23. Hua, C.C., Wang, K., Chen, J.N., You, X.: Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor. Nonlinear Dyn. 94(1), 1–12 (2018)

    Article  Google Scholar 

  24. Huyett, L.M., Dassau, E., Zisser, H.C., Doyle III, F.J.: Design and evaluation of a robust PID controller for a fully implantable artificial pancreas. Ind. Eng. Chem. Res. 54(42), 10311–10321 (2015)

    Article  Google Scholar 

  25. Jacobs, P.G., Youssef, J.E., Castle, J., Bakhtiani, P., Branigan, D., Breen, M., Bauer, D., Preiser, N., Leonard, G., Stonex, T., Ward, W.K.: Automated control of an adaptive bihormonal, dual-sensor artificial pancreas and evaluation during inpatient studies. IEEE Trans. Biomed. Eng. 61(10), 2569–2581 (2014)

    Article  Google Scholar 

  26. Lee, J.B., Dassau, E., Gondhalekar, R., Seborg, D.E., Pinsker, J.E., Doyle III, F.J.: Enhanced model predictive control (eMPC) strategy for automated glucose control. Ind. Eng. Chem. Res. 55(46), 11857–11868 (2016)

    Article  Google Scholar 

  27. Mauseth, R., Wang, Y., Dassau Jr., E., R.K., Matheson, D., Zisser, H.: Proposed clinical application for tuning fuzzy logic controller of artificial pancreas utilizing a personalization factor. J. Diabetes Sci. Technol. 4(4), 913–922 (2010)

    Google Scholar 

  28. Paolo Incremona, G., Messori, M., Toffanin, C., Cobelli, C., Magni, L.: Artificial pancreas: from control-to-range to control-to-target. In: Proceedings 20th IFAC World Congress, vol. 50, pp. 7737 – 7742 (2017)

    Google Scholar 

  29. Richard, M., Hirsch, I.B., Jennifer, B., Robert, K., Don, M., Srinath, S., Carla, G.: Use of a “fuzzy logi” controller in a closed-loop artificial pancreas. Diabetes Technol. Ther. 15(8), 628–633 (2013)

    Article  Google Scholar 

  30. Rossetti, P., Quiros, C., Moscardo, V., Comas, A., Gimenez, M., Ampudia-Blasco, F.J., Leon, F., Montaser, E., Conget, I., Bondia, J., Vehi, J.: Closed-loop control of postprandial glycemia using an insulin-on-board limitation through continuous action on glucose target. Diabetes Technol. Ther. 19(6), 355–362 (2017)

    Article  Google Scholar 

  31. Russell, S.J., El-Khatib, F.H., Sinha, M., Magyar, K.L., McKeon, K., Goergen, L.G., Balliro, C., Hillard, M.A., Nathan, D.M., Damiano, E.R.: Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 371(4), 313–325 (2014)

    Article  Google Scholar 

  32. Shi, D., Dassau, E., Doyle III, F.J.: Zone model predictive control with glucose- and velocity-dependent control penalty adaptation for an artificial pancreas. In: Proceedings of the American Control Conference (2018)

    Google Scholar 

  33. Shi, D., Dassau, E., Doyle III, F.J.: Adaptive zone model predictive control of artificial pancreas based on glucose and velocity-dependent control penalties. IEEE Trans. Biomed. Eng. 66(4), 1045–1054 (2019)

    Article  Google Scholar 

  34. Steil, G.M.: Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control. J. Diabetes Sci. Technol. 7(6), 1621–1631 (2013)

    Article  Google Scholar 

  35. Steil, G.M., Palerm, C.C., Kurtz, N., Voskanyan, G., Roy, A., Paz, S., Kandeel, F.R.: The effect of insulin feedback on closed loop glucose control. J. Clin. Endocrinol. Metab. 96(5), 1402–1408 (2011)

    Article  Google Scholar 

  36. Steil, G.M., Rebrin, K., Darwin, C., Hariri, F., Saad, M.F.: Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55(12), 3344–3350 (2006)

    Article  Google Scholar 

  37. Steil, G.M., Rebrin, K., Janowski, R., Darwin, C., Saad, M.F.: Modeling \(\beta \)-cell insulin secretion - implications for closed-loop glucose homeostasis. Diabetes Technol. Ther. 5(6), 953–964 (2003)

    Article  Google Scholar 

  38. Thabit, H., Hovorka, R.: Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia 59(9), 1795–1805 (2016)

    Article  Google Scholar 

  39. Thabit, H., Tauschmann, M., Allen, J.M., Leelarathna, L., Hartnell, S., Wilinska, M.E., Acerini, C.L., Dellweg, S., Benesch, C., Heinemann, L., Mader, J.K., Holzer, M., Kojzar, H., Exall, J., Yong, J., Pichierri, J., Barnard, K.D., Kollman, C., Cheng, P., Hindmarsh, P.C., Campbell, F.M., Arnolds, S., Pieber, T.R., Evans, M.L., Dunger, D.B., Hovorka, R.: Home use of an artificial beta cell in type 1 diabetes. N. Engl. J. Med. 373(22), 2129–2140 (2015)

    Article  Google Scholar 

  40. Toffanin, C., Messori, M., Palma, F.D., Nicolao, G.D., Cobelli, C., Magni, L.: Artificial pancreas: model predictive control design from clinical experience. J. Diabetes Sci. Technol. 7(6), 1470–1483 (2013)

    Article  Google Scholar 

  41. Turksoy, K., Quinn, L., Littlejohn, E., Cinar, A.: Multivariable adaptive identification and control for artificial pancreas systems. IEEE Trans. Biomed. Eng. 61(3), 883–891 (2014)

    Article  Google Scholar 

  42. Weinzimer, S.A., Steil, G.M., Swan, K.L., Dziura, J., Kurtz, N., Tamborlane, W.V.: Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 5(5), 934 (2008)

    Article  Google Scholar 

  43. Yi, H., Zhao, C.: Active disturbance rejection control: methodology and theoretical analysis. ISA Trans. 53(4), 963–976 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Shi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, D., Huang, Y., Wang, J., Shi, L. (2021). Event-Triggered Adaptive Disturbance Rejection for Artificial Pancreas. In: Event-Triggered Active Disturbance Rejection Control. Studies in Systems, Decision and Control, vol 356. Springer, Singapore. https://doi.org/10.1007/978-981-16-0293-1_9

Download citation

Publish with us

Policies and ethics