Skip to main content

Event-Triggered ADRC for Electric Cylinders with PD-Type Event-Triggering Conditions

  • Chapter
  • First Online:
Event-Triggered Active Disturbance Rejection Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 356))

  • 461 Accesses

Abstract

In this chapter, we illustrate the application of the proposed ET-ADRC approach through a different type of servo systems. Specifically, we consider a position tracking problem for electric cylinders used in a recently developed wheel-legged robotic system. Each leg of this robotic system is composed of six electric cylinders, which are controlled based on data from more than 12 sensors transmitted through a controller area network (CAN) and a user datagram protocol (UDP) network. The requirement of achieving satisfactory performance under limited communication resources motivates us to adopt an event-triggered control approach for the electric cylinders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Årzen, K.E.: A simple event-based pid controller. IFAC World Congress 32, 8687–8692 (1999)

    Google Scholar 

  2. Åstrom, K.J., Bernhardsson, B.: Comparison of periodic and event based sampling for first order stochastic systems. IFAC World Congress 32, 5006–5011 (1999)

    Google Scholar 

  3. Behzad, A., Amin, N.: Hardware implementation of an adrc controller on a gimbal mechanism. IEEE Trans. Control. Syst. Technol. 26(6), 2268–2275 (2017)

    Google Scholar 

  4. Chaoui, H., Khayamy, M., Aljarboua, A.A.: Adaptive interval type-2 fuzzy logic control for pmsm drives with a modified reference frame. IEEE Trans. Ind. Electron. 64(5), 3786–3797 (2017)

    Article  Google Scholar 

  5. Chen, S., Xue, W., Huang, Y.: Analytical design of active disturbance rejection control for nonlinear uncertain systems with delay. Control Eng. Pract. 84, 323–336 (2019)

    Article  Google Scholar 

  6. Chu, Z., Sun, Y., Wu, C., Sepehri, N.: Active disturbance rejection control applied to automated steering for lane keeping in autonomous vehicles. Control Eng. Pract. 74, 13–21 (2018). https://doi.org/10.1016/j.conengprac.2018.02.002

    Article  Google Scholar 

  7. Ding, W., Deng, H., Xia, Y., Duan, X.: Tracking control of electro-hydraulic servo multi-closed-chain mechanisms with the use of an approximate nonlinear internal model. Control Eng. Pract. 58, 225–241 (2017). https://doi.org/10.1016/j.conengprac.2016.11.003

    Article  Google Scholar 

  8. Durand, S., Guerrero-Castellanos, J.F.: Event-based digital pid control. In: 2015 International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP), pp. 1–7 (2015). https://doi.org/10.1109/EBCCSP.2015.7300654

  9. Guo, J., Xue, W., Hu, T.: Active disturbance rejection control for pmlm servo system in cnc machining. J. Syst. Sci. Complex. 29(1), 74–98 (2016). https://doi.org/10.1007/s11424-015-3258-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, J.: From pid to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009). https://doi.org/10.1109/TIE.2008.2011621

    Article  Google Scholar 

  11. Heemels, W.P.M.H., Donkers, M.C.F.: Model-based periodic event-triggered control for linear systems. Automatica 49(3), 698–711 (2013)

    Article  MathSciNet  Google Scholar 

  12. Huang, Y., Wang, J., Shi, D., Shi, L.: Toward event-triggered extended state observer. IEEE Trans. Autom. Control 63(6), 1842–1849 (2018)

    Article  MathSciNet  Google Scholar 

  13. Li, H., Shi, Y.: Event-triggered robust model predictive control of continuous-time nonlinear systems. Automatica 50(5), 1507–1513 (2014)

    Article  MathSciNet  Google Scholar 

  14. Liu, X., Shan, L., Chen, H., Li, J.: The application of the improved udp based on the extrapolation algorithm in the network servo system. In: IEEE International Conference on Information and Automation (2017)

    Google Scholar 

  15. Matraji, I., Al-Durra, A., Haryono, A., Al-Wahedi, K., Abou-Khousa, M.: Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control. Control Eng. Pract. 72, 167–176 (2018). https://doi.org/10.1016/j.conengprac.2017.11.009

    Article  Google Scholar 

  16. Mendoza-Mondragon, F., Hernandez-Guzman, V.M., Rodriguez-Resendiz, J.: Robust speed control of permanent magnet synchronous motors using two-degrees-of-freedom control. IEEE Trans. Ind. Electron. 65(8), 6099–6108 (2018)

    Article  Google Scholar 

  17. Plummer, A.: Model-based motion control for multi-axis servohydraulic shaking tables. Control Eng. Pract. 53, 109–122 (2016). https://doi.org/10.1016/j.conengprac.2016.05.004

    Article  Google Scholar 

  18. Puchta, E.D.P., Siqueira, H.V., dos Santos Kaster, M.: Optimization tools based on metaheuristics for performance enhancement in a gaussian adaptive pid controller. IEEE Trans. Cybern. 50, 1–10 (2019). https://doi.org/10.1109/TCYB.2019.2895319

  19. Rubaai, A., Castro-Sitiriche, J., Ofoli, A.R.: Design and implementation of parallel fuzzy pid controller for high-performance brushless motor drives: an integrated environment for rapid control prototyping. IEEE Trans. Ind. Appl. 44(4), 1090–1098 (2008)

    Article  Google Scholar 

  20. Ruiz-Carcel, C., Starr, A.: Data-based detection and diagnosis of faults in linear actuators. IEEE Trans. Instrum. Meas. 67(9), 2035–2047 (2018). https://doi.org/10.1109/TIM.2018.2814067

    Article  Google Scholar 

  21. Shi, D., Shi, L., Chen, T.: Event-Based State Estimation. Springer, Berlin (2016)

    Google Scholar 

  22. Shi, D., Xue, J., Zhao, L., Wang, J., Huang, Y.: Event-triggered active disturbance rejection control of dc torque motors. IEEE/ASME Trans. Mechatron. 22(5), 2277–2287 (2017)

    Article  Google Scholar 

  23. Sobczyk, M.R., Perondi, E.A., Cunha, M.A.B.: A continuous approximation of the lugre friction model. ABCM Symp. Ser. Mechatron. 4, 218–228 (2010)

    Google Scholar 

  24. Sobczyk, M.R., Perondi, E.A., Cunha, M.A.B.: A continuous extension of the lugre friction model with application to the control of a pneumatic servo positioner. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 3544–3550 (2012). https://doi.org/10.1109/CDC.2012.6426406

  25. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  26. Wang, A., Mu, B., Shi, Y.: Consensus control for a multi-agent system with integral-type event-triggering condition and asynchronous periodic detection. IEEE Trans. Ind. Electron. 64(7), 5629–5639 (2017). https://doi.org/10.1109/TIE.2017.2677312

    Article  Google Scholar 

  27. Wang, Y., Wang, Y., Liu, X., Gu, Y.: Control research of network servo system based on smith predictor. In: Intelligent Control and Automation (2015)

    Google Scholar 

  28. Xue, W., Bai, W., Yang, S., Song, K., Huang, Y., Xie, H.: Adrc with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines. IEEE Trans. Ind. Electron. 62(9), 5847–5857 (2015). https://doi.org/10.1109/TIE.2015.2435004

    Article  Google Scholar 

  29. Xue, W., Madonski, R., Lakomy, K., Gao, Z., Huang, Y.: Add-on module of active disturbance rejection for set-point tracking of motion control systems. IEEE Trans. Ind. Appl. 53(4), 4028–4040 (2017). https://doi.org/10.1109/TIA.2017.2677360

    Article  Google Scholar 

  30. Yang, J., Chen, W., Li, S., Guo, L., Yan, Y.: Disturbance/uncertainty estimation and attenuation techniques in pmsm drives-a survey. IEEE Trans. Ind. Electron. 64(4), 3273–3285 (2017)

    Article  Google Scholar 

  31. Yao, J., Deng, W., Jiao, Z.: Adaptive control of hydraulic actuators with lugre model-based friction compensation. IEEE Trans. Ind. Electron. 62(10), 6469–6477 (2015)

    Article  Google Scholar 

  32. Zheng, Q., Dong, L., Lee, D.H., Gao, Z.: Active disturbance rejection control for mems gyroscopes. IEEE Trans. Control Syst. Technol. 17(6), 1432–1438 (2009). https://doi.org/10.1109/TCST.2008.2008638

    Article  Google Scholar 

  33. Zhong, S., Huang, Y., Guo, L.: A parameter formula connecting PID and ADRC. In: Science China Information Sciences, pp. 1–13. (2020). https://doi.org/10.1007/s11432-019-2712-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Shi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, D., Huang, Y., Wang, J., Shi, L. (2021). Event-Triggered ADRC for Electric Cylinders with PD-Type Event-Triggering Conditions. In: Event-Triggered Active Disturbance Rejection Control. Studies in Systems, Decision and Control, vol 356. Springer, Singapore. https://doi.org/10.1007/978-981-16-0293-1_7

Download citation

Publish with us

Policies and ethics