Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 356))

Abstract

The scope of this book generally falls in event-based sampled-data systems and active disturbance rejection control (ADRC). In this introduction chapter, the background materials related to these topics will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that due to the existence of communication constraints, the problem of analyzing average sampling or communication rate is also necessary.

  2. 2.

    The formulations of the high-gain observer and the LESO have the same theoretical meaning.

References

  1. Abdelrahim, M., Postoyan, R., Daafouz, J.: Event-triggered control of nonlinear singularly perturbed systems based only on the slow dynamics. Automatica 52, 15–22 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38, 393–422 (2002)

    Google Scholar 

  3. Alamo, T., Bravo, J., Camacho, E.: Guaranteed state estimation by zonotopes. Automatica 41(6), 1035–1043 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Al-Areqi, S., Gorges, D., Liu, S.: Event-based control and scheduling codesign: Stochastic and robust approaches. IEEE Trans. Autom. Control 60(99), 1291–1303 (2014)

    Google Scholar 

  5. Anta, A., Tabuada, P.: To sample or not to sample: self-triggered control for nonlinear systems. IEEE Trans. Autom. Control 55(9), 2030–2042 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Antunes, D., Heemels, W.: Rollout event-triggered control: beyond periodic control performance. IEEE Trans. Autom. Control 59(12), 3296–3311 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Arzén, K.E.: A simple event-based pid controller. In: Proceedings of the IFAC World Congress (1999)

    Google Scholar 

  8. Åström, K., Bernhardsson, B.: Comparison of periodic and event based sampling for first-order stochastic systems. In: Preprints 14th World Congress of IFAC (1999)

    Google Scholar 

  9. Åström, K., Bernhardsson, B.: Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 2, pp. 2011–2016 (2002)

    Google Scholar 

  10. Åström, K.J., Wittenmark, B.: Computer-controlled systems: theory and design. Prentice-Hall, Upper Saddle River (1984)

    Google Scholar 

  11. Borgers, D., Heemels, W.: Event-separation properties of event-triggered control systems. IEEE Trans. Autom. Control 59(10), 2644–2656 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Cassandras, C.G.: The event-driven paradigm for control, communication and optimization. J. Control Decis. 1(1), 3–17 (2014)

    Google Scholar 

  13. Castaneda, L., Luviano-Juarez, A., Chairez, I.: Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans. Control Syst. Technol. 23(4), 1387–1398 (2015)

    Google Scholar 

  14. Chen, T., Francis, B.: Optimal Sampled-Data Control Systems. Springer, Berlin (1995)

    Google Scholar 

  15. Chen, Z., Zheng, Q., Gao, Z.: Active disturbance rejection control of chemical processes. In: 2007 IEEE International Conference on Control Applications, pp. 855–861 (2007)

    Google Scholar 

  16. Chisci, L., Garulli, A., Zappa, G.: Recursive state bounding by parallelotopes. Automatica 32(7), 1049–1055 (1996)

    MathSciNet  Google Scholar 

  17. Dong, L., Zheng, Q., Gao, Z.: A novel oscillation controller for vibrational mems gyroscopes. In: 2007 American Control Conference, pp. 3204–3209 (2007)

    Google Scholar 

  18. Dong, L., Avanesian, D.: Drive-mode control for vibrational mems gyroscopes. IEEE Trans. Ind. Electron. 56(4), 956–963 (2009)

    Google Scholar 

  19. Donkers, M., Heemels, W.: Output-based event-triggered control with guaranteed \(\cal{L}_{\infty }\)-gain and improved and decentralized event-triggering. IEEE Trans. Autom. Control 57(6), 1362–1376 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Erenturk, K.: Fractional-order \(\text{ PI}^{\lambda }\text{ D}^{\mu }\) and active disturbance rejection control of nonlinear two-mass drive system. IEEE Trans. Ind. Electron. 60(9), 3806–3813 (2013)

    Google Scholar 

  21. Forni, F., Galeani, S., Nesic, D., Zaccarian, L.: Event-triggered transmission for linear control over communication channels. Automatica 50(2), 490–498 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Francis, B., Wonham, W.: The internal model principle of control theory. Automatica 12(5), 457–465 (1976)

    MathSciNet  MATH  Google Scholar 

  23. Fu, M.: Lack of separation principle for quantized linear quadratic gaussian control. IEEE Trans. Autom. Control 57(9), 2385–2390 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Gao, Z., Hu, S., Jiang, F.: A novel motion control design approach based on active disturbance rejection. In: Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 5, pp. 4877–4882 (2001)

    Google Scholar 

  26. Gao, Z.: Scaling and bandwidth-parameterization based controller tuning. Am. Control Conf. 6, 4989–4996 (2003)

    Google Scholar 

  27. Girard, A.: Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control 60(99), 1992–1997 (2014)

    Google Scholar 

  28. Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Goforth, F.J.: On motion control design and tuning techniques. In: Proceedings of the 2004 American Control Conference, vol. 1, pp. 716–721 (2004)

    Google Scholar 

  30. Goforth, F., Gao, Z.: An active disturbance rejection control solution for hysteresis compensation. Am. Control Conf. 2008, 2202–2208 (2008)

    Google Scholar 

  31. Grüne, L., Hirche, S., Junge, O., Koltai, P., Lehmann, D., Lunze, J., Molin, A., Sailer, R., Sigurani, M., Stöcker, C., Wirth, F.: Event-based control. In: J. Lunze (ed.) Networked Control Systems, Control Theory of Digitally Networked Dynamic Systems, pp. 169–261. Springer, Berlin (2014)

    Google Scholar 

  32. Guo, B.Z., Jin, F.F.: Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance. IEEE Trans. Autom. Control 60(99), 824–830 (2014)

    Google Scholar 

  33. Guo, B., Zhao, Z.: On convergence of nonlinear active disturbance rejection for SISO systems. In: 24th Chinese Control and Decision Conference (CCDC), 2012, pp. 3507–3512 (2012)

    Google Scholar 

  34. Guo, B., Jin, F.: Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input. IEEE Trans. Autom. Control 58(5), 1269–1274 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Guo, B.Z., Jin, F.F.: The active disturbance rejection and sliding mode control approach to the stabilization of the Euler–Bernoulli beam equation with boundary input disturbance. Automatica 49(9), 2911–2918 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Guo, B., Jin, F.: Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance. IEEE Trans. Autom. Control 60(3), 824–830 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Guo, B., Zhao, Z.: On convergence of tracking differentiator. Int. J. Control 84(4), 693–701 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Guo, B.Z., Zhao, Z.L.: On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60(6), 420–430 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Guo, B.Z., Zhao, Z.L.: On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty. IET Control Theory Appl. 6(15), 2375–2386 (2012)

    MathSciNet  Google Scholar 

  40. Guo, B., Zhao, Z.: On convergence of nonlinear active disturbance rejection for MIMO system. SIAM J. Control Optim. 51(2), 1727–1757 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Guo, B.Z., Zhao, Z.L.: Weak convergence of nonlinear high-gain tracking differentiator. IEEE Trans. Autom. Control 58(4), 1074–1080 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Guo, B.Z., Zhao, Z.: Active disturbance rejection control: theoretical perspectives. Commun. Inf. Syst. 15, 361–421 (2015). https://doi.org/10.4310/CIS.2015.v15.n3.a3

    Article  MathSciNet  MATH  Google Scholar 

  43. Han, J.: Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties. National Defense Industry Press, Arlington (2008)

    Google Scholar 

  44. Han, J.: A class of extended state observers for uncertain systems. Control Decis. 10, 85–88 (1995)

    Google Scholar 

  45. Han, J.: Extended state observer for a class of uncertain plants. Control Decis. 10(1), 85–88 (1995)

    Google Scholar 

  46. Han, J.: Auto disturbances rejection controller and its applications. Control Decis. 13(1), 19–23 (1998)

    Google Scholar 

  47. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Google Scholar 

  48. Han, J., Wang, W.: Nonlinear tracking-differentiator. Syst. Sci. Math. 14(2), 177–183 (1994)

    MATH  Google Scholar 

  49. Heemels, W., Johansson, K., Tabuada, P.: An introduction to event-triggered and self-triggered control. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 3270–3285 (2012)

    Google Scholar 

  50. Heemels, W., Donkers, M.: Model-based periodic event-triggered control for linear systems. Automatica 49(3), 698–711 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Heemels, W., Donkers, M., Teel, A.: Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Henningsson, T., Johannesson, E., Cervin, A.: Sporadic event-based control of first-order linear stochastic systems. Automatica 44(11), 2890–2895 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Hetel, L., Fridman, E.: Robust sampled-data control of switched affine systems. IEEE Trans. Autom. Control 58(11), 2922–2928 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Ho, Y.C., Cao, X.R.: Perturbation Analysis of Discrete-Event Dynamic Systems. Kluwer Academic Publisher, Amsterdam (1991)

    Google Scholar 

  55. Huang, Y., Xu, K., Han, J., Lam, J.: Flight control design using extended state observer and non-smooth feedback. In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001, vol. 1, pp. 223–228 (2001)

    Google Scholar 

  56. Huang, Y., Xue, W.: Active disturbance rejection control: methodology and theoretical analysis. ISA Trans. 53(4), 963–976 (2014)

    Google Scholar 

  57. Huang, Y., Wang, J., Shi, D., Shi, L.: Toward event-triggered extended state observer. IEEE Trans. Autom. Control 63(6), 1842–1849 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Huang, Y., Wang, J., Shi, D., Wu, J., Shi, L.: Event-triggered sampled-data control: an active disturbance rejection approach. IEEE/ASME Trans. Mechatron. 24(5), 2052–2063 (2019)

    Google Scholar 

  59. Khalil, H.K.: High-gain observers in nonlinear feedback control. In: Nijmeijer, H., Fossen, T. (eds.) New Directions in nonlinear observer design. Lecture Notes in Control and Information Sciences, vol. 244, pp. 249–268. Springer, London (1999)

    Google Scholar 

  60. Kosut, R., Lau, M., Boyd, S.: Set-membership identification of systems with parametric and nonparametric uncertainty. IEEE Trans. Autom. Control 37(7), 929–941 (1992)

    MathSciNet  MATH  Google Scholar 

  61. Lemmon, M.: Event-triggered feedback in control, estimation, and optimization. In: Bemporad, A., Heemels, M., Johansson, M. (eds.) Networked Control Systems. Lecture Notes in Control and Information Sciences, vol. 406, pp. 293–358. Springer, London (2010)

    MATH  Google Scholar 

  62. Li, H., Shi, Y.: Event-triggered robust model predictive control of continuous-time nonlinear systems. Automatica 50(5), 1507–1513 (2014)

    MathSciNet  MATH  Google Scholar 

  63. Liberzon, D.: Switching in Systems and Control. Birkhauser, Basel(2003)

    Google Scholar 

  64. Liberzon, D., Nesic, D.: Input-to-state stabilization of linear systems with quantized state measurements. IEEE Trans. Autom. Control 52(5), 767–781 (2007)

    MathSciNet  MATH  Google Scholar 

  65. Lili, D., Qing, Z., Avanesov, D.: The design and implementation of driving mode control for vibrational gyroscopes. In: 2008 American Control Conference, pp. 4419–4424 (2008)

    Google Scholar 

  66. Liu, T., Jiang, Z.P.: A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Trans. Autom. Control 60(99), 2072–2085 (2015)

    Google Scholar 

  67. Liu, T., Jiang, Z.P.: Event-based control of nonlinear systems with partial state and output feedback. Automatica 53, 10–22 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Liu, Q., Wang, Z., He, X., Zhou, D.: A survey of event-based strategies on control and estimation. Syst. Sci. Control Eng. 2, 90–97 (2014)

    Google Scholar 

  69. Lunze, J., Lehmann, D.: A state-feedback approach to event-based control. Automatica 46(1), 211–215 (2010)

    MathSciNet  MATH  Google Scholar 

  70. Maeder, U., Borrelli, F., Morari, M.: Linear offset-free model predictive control. Automatica 45(10), 2214–2222 (2009)

    MathSciNet  MATH  Google Scholar 

  71. Marchand, N., Durand, S., Castellanos, J.: A general formula for event-based stabilization of nonlinear systems. IEEE Trans. Autom. Control 58(5), 1332–1337 (2013)

    Google Scholar 

  72. Mazo, M., Cao, M.: Asynchronous decentralized event-triggered control. Automatica 50(12), 3197–3203 (2014)

    MathSciNet  MATH  Google Scholar 

  73. Mazo, M., Tabuada, P.: Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Trans. Autom. Control 56(10), 2456–2461 (2011)

    MathSciNet  MATH  Google Scholar 

  74. Meng, X., Chen, T.: Optimal sampling and performance comparison of periodic and event based impulse control. IEEE Trans. Autom. Control 57(12), 3252–3259 (2012)

    MathSciNet  MATH  Google Scholar 

  75. Molin, A., Hirche, S.: On the optimality of certainty equivalence for event-triggered control systems. IEEE Trans. Autom. Control 58(2), 470–474 (2013)

    MathSciNet  MATH  Google Scholar 

  76. Morari, M., Maeder, U.: Nonlinear offset-free model predictive control. Automatica 48(9), 2059–2067 (2012)

    MathSciNet  MATH  Google Scholar 

  77. Mustafa, G., Chen, T.: \(h_\infty \) filtering for nonuniformly sampled systems: a Markovian jump systems approach. Syst. Control Lett. 60(10), 871–876 (2011)

    MathSciNet  MATH  Google Scholar 

  78. Pannocchia, G., Rawlings, J.B.: Disturbance models for offset-free model-predictive control. AIChE J. 49(2), 426–437 (2003)

    Google Scholar 

  79. Peng, C., Yang, T.C.: Event-triggered communication and control co-design for networked control systems. Automatica 49(5), 1326–1332 (2013)

    MathSciNet  MATH  Google Scholar 

  80. Postoyan, R., Bragagnolo, M.C., Galbrun, E., Daafouz, J., Nesic, D., Castelan, E.B.: Event-triggered tracking control of unicycle mobile robots. Automatica 52, 302–308 (2015)

    MathSciNet  MATH  Google Scholar 

  81. Premaratne, U., Halgamuge, S., Mareels, I.: Event triggered adaptive differential modulation: a new method for traffic reduction in networked control systems. IEEE Trans. Autom. Control 58(7), 1696–1706 (2013)

    MathSciNet  MATH  Google Scholar 

  82. Quevedo, D., Gupta, V., Ma, W.J., Yuksel, S.: Stochastic stability of event-triggered anytime control. IEEE Trans. Autom. Control 59(12), 3373–3379 (2014)

    MathSciNet  MATH  Google Scholar 

  83. Ramirez-Neria, M., Garcia-Antonio, J., Sira-Ramirez, H., Velasco-Villa, M., Castro-Linares, R.: On the linear active rejection control of thomson’s jumping ring. Am. Control Conf. (ACC) 2013, 6643–6648 (2013)

    Google Scholar 

  84. Shi, D., Shi, L., Chen, T.: Event-based State Estimation: A Stochastic Perspective. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-26606-0

  85. Shi, D., Xue, J., Zhao, L., Wang, J., Huang, Y.: Event-triggered active disturbance rejection control of dc torque motors. IEEE/ASME Trans. Mechatron. 22(5), 2277–2287 (2017)

    Google Scholar 

  86. Sira Ramirez, H., Linares Flores, J., Garcia Rodriguez, C., Contreras Ordaz, M.: On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Trans. Control Syst. Technol. 22(5), 2056–2063 (2014)

    Google Scholar 

  87. Sontag, E.D.: Mathematical Control Theory Deterministic Finite Dimensional Systems. Springer, Berlin (1998)

    MATH  Google Scholar 

  88. Sun, Z., Ge, S.: Stability Theory of Switched Dynamical Systems. Springer, Berlin (2011)

    Google Scholar 

  89. Sun, B., Gao, Z.: A dsp-based active disturbance rejection control design for a 1-kw h-bridge dc-dc power converter. IEEE Trans. Ind. Electron. 52(5), 1271–1277 (2005)

    Google Scholar 

  90. Sun, B., Gao, Z.: A DSP-based active disturbance rejection control design for a 1-kw H-bridge DC-DC power converter. IEEE Trans. Ind. Electron. 52(5), 1271–1277 (2005)

    Google Scholar 

  91. Sun, J., Yang, J., Li, S., Zheng, W.X.: Sampled-data-based event-triggered active disturbance rejection control for disturbed systems in networked environment. IEEE Trans. Cybern. 49(2), 556–566 (2019)

    Google Scholar 

  92. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    MathSciNet  MATH  Google Scholar 

  93. Tao, J., Sun, Q., Sun, H., Chen, Z., Dehmer, M., Sun, M.: Dynamic modeling and trajectory tracking control of parafoil system in wind environments. IEEE/ASME Trans. Mechatron. 22(6), 2736–2745 (2017). https://doi.org/10.1109/TMECH.2017.2766882

    Article  Google Scholar 

  94. Wang, H., Huang, H.: Properties and applications of ESO. Control Decis. 28(7), 1078 (2013)

    Google Scholar 

  95. Wang, X., Lemmon, M.: On event design in event-triggered feedback systems. Automatica 47(10), 2319–2322 (2011)

    MathSciNet  MATH  Google Scholar 

  96. Wang, B., Meng, X., Chen, T.: Event based pulse-modulated control of linear stochastic systems. IEEE Trans. Autom. Control 59(8), 2144–2150 (2014)

    MathSciNet  MATH  Google Scholar 

  97. Wang, J., Tan, C., Wu, H.: Online shape modification of molecular weight distribution based on the principle of active disturbance rejection controller. IEEE Access 7, 53163–53171 (2019)

    Google Scholar 

  98. Xue, W., Huang, Y., Yang, X.: What kinds of system can be used as tracking-differentiator. In: 29th Chinese Control Conference (CCC), 2010, pp. 6113–6120 (2010)

    Google Scholar 

  99. Xue, W., Huang, Y.: Comparison of the DOB based control, a special kind of PID control and ADRC. In: American Control Conference (ACC), pp. 4373–4379 (2011)

    Google Scholar 

  100. Xue, W., Huang, Y.: On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems. ISA Trans. 53(4), 955–962 (2014)

    Google Scholar 

  101. Yang, X., Huang, Y.: Capabilities of extended state observer for estimating uncertainties. In: American Control Conference, pp. 3700–3705 (2009)

    Google Scholar 

  102. Yang, J., Cui, H., Li, S., Zolotas, A.: Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Trans. Circuits Syst. I: Regul. Pap. 65(2), 832–841 (2018)

    Google Scholar 

  103. Yuksel, S.: Jointly optimal lqg quantization and control policies for multi-dimensional systems. IEEE Trans. Autom. Control 59(6), 1612–1617 (2014)

    MATH  Google Scholar 

  104. Zhang, J., Zheng, W.X., Xu, H., Xia, Y.: Observer-based event-driven control for discrete-time systems with disturbance rejection. IEEE Transactions on Cybernetics, pp. 1–11 (2019)

    Google Scholar 

  105. Zhao, C., Huang, Y.: ADRC based input disturbance rejection for minimum-phase plants with unknown orders and/or uncertain relative degrees. J. Syst. Sci. Complex 25, 625–640 (2012)

    MathSciNet  MATH  Google Scholar 

  106. Zheng, Q., Chen, Z., Gao, Z.: A practical approach to disturbance decoupling control. Control Eng. Pract. 17(9), 1016–1025 (2009). https://doi.org/10.1016/j.conengprac.2009.03.005, http://www.sciencedirect.com/science/article/pii/S0967066109000550

  107. Zheng, Q., Gao, L., Gao, Z.: On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In: 46th IEEE Conference on Decision and Control, pp. 3501–3506 (2007)

    Google Scholar 

  108. Zheng, Q., Gao, Z.: Disturbance rejection in mems gyroscope: problems and solutions. In: Proceedings of the 30th Chinese Control Conference, pp. 6334–6339 (2011)

    Google Scholar 

  109. Zheng, Q., Gao, Z.: Motion control design optimization: problem and solutions. Int. J. Intell. Control Syst. 10 (2005)

    Google Scholar 

  110. Zheng, Q., Gao, Z.: On practical applications of active disturbance rejection control. In: 29th Chinese Control Conference (CCC), vol. 17, pp. 6095–6100 (2010)

    Google Scholar 

  111. Zheng, Q., Gao, Z.: On practical applications of active disturbance rejection control. In: Proceedings of the 29th Chinese Control Conference, pp. 6095–6100 (2010)

    Google Scholar 

  112. Zheng, Q., Dong, L., Lee, D.H., Gao, Z.: Active disturbance rejection control for MEMS gyroscopes. IEEE Trans. Control Syst. Technol. 17(6), 1432–1438 (2009)

    Google Scholar 

  113. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Shi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, D., Huang, Y., Wang, J., Shi, L. (2021). Introduction. In: Event-Triggered Active Disturbance Rejection Control. Studies in Systems, Decision and Control, vol 356. Springer, Singapore. https://doi.org/10.1007/978-981-16-0293-1_1

Download citation

Publish with us

Policies and ethics