Skip to main content

Wood Plastic Composite: Emerging Material for an Environmental Safety—A Review

  • Conference paper
  • First Online:
Advances in Clean Energy Technologies

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

Nowadays, main concern of our society is to recycle the plastic products. So as to overcome this issue, a new material named as ‘Wood Plastic Composite’ is emerging in the market. Some of the good characteristics of this material are biodegradability, recyclability, low manufacturing cost, high chemical resistivity, high strength to weight proportion, fire resistance, and high stiffness to weight proportion. Wood Plastic Composite is the better substitution for ‘pure wood’ and ‘pure plastics’ therefore find application in various fields like—aeroplane, automotive, electrical, sports, packaging, furnitures, decking, fencing, landscaping, ceiling, room partition, etc. Wood Plastic Composite is an eco-friendly material which also reduces the exhaustion of petroleum resources and also reduces the emission of CO2. This paper presents various types of reinforcements and various types of matrix that could be used to make number of combinations for building Wood Plastic Composite. Various manufacturing techniques are also discussed in this paper. Remarkable contribution of various authors in this field are also illustrated. It was concluded that recycled wood and recycled plastics both could be used to form a Wood Plastic Composite material which will going to reduce many environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Desai, 15 popular types of wood used in the construction industry. https://gharpedia.com/blog/types-of-wood-used-for-construction/ (2019)

  2. S. Mittal, Different types of plastics and their classification. https://hariyaliprithavi.blogspot.com/2014/10/different-types-of-plastics-and-their.html (2014)

  3. T.M. Cunha, C.R.M. Afanso, Effect of ni content on the hardenability of a bainitic steel for plastics processing. ABCM Int. Congress Mech. Eng. 24 (2017)

    Google Scholar 

  4. R. Svečko, D. Kusić, T. Kek, A. Sarjaš, A. Hančič, J. Grum, Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors. Sensors (2013)

    Google Scholar 

  5. A. Kumar, H.K. Rajath, K.J. Preetham, J. Rohith, fabrication of plastic compression molding machine. Int. Adv. Res. J. Sci. Eng. Technol. 4(7) (2017)

    Google Scholar 

  6. M.A. Binhussain, M.M. El-Tonsy, Palm leave and plastic waste wood composite for out-door structures. Constr. Build. Mater. 47, 1431–1435 (2013)

    Article  Google Scholar 

  7. S. Migneault, A. Koubaa, P. Perré, Ecole Centrale Paris, Chatenay-Malabry, Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood-plastic composites. J. Wood Chem. Technol. 34, 241–261 (2014)

    Google Scholar 

  8. A. Nourbakhsh, A. Ashori, Wood plastic composites from agro-waste materials: Analysis of mechanical properties. Biores. Technol. 101, 2525–2528 (2010)

    Article  Google Scholar 

  9. M. Hyvärinen, M. Ronkanen, T. Kärki, The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite. Compos. Struct. 210, 321–326 (2019)

    Article  Google Scholar 

  10. I. Turku, A. Keskisaari, T. Kärki, A. Puurtinen, P. Marttila, Characterization of wood plastic composites manufactured from recycled plastic Blends. Compos. Struct. 161, 469–476 (2016)

    Article  Google Scholar 

  11. A. Keskisaari, T. Kärki, The use of waste materials in wood-plastic composites and their impact on the profitability of the product. Resour. Conserv. Recycl. 134, 257–261 (2018)

    Article  Google Scholar 

  12. K-S. Rahman, M.N. Islam, M.M. Rahman, M.O. Hannan, R. Dungani, H.P.S. Abdul Khalil, Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties. SpringerPlus, 2(1), 629, 1–7 (2013)

    Google Scholar 

  13. T. Huuhilo, O. Martikka, S. Butylina, T. Kärki, Impact of Mineral fillers to the moisture resistance of wood plastic composites. Baltic For. 16(1), 126–131 (2010)

    Google Scholar 

  14. I. Turku, T. Kärki, The effect of carbon fibers, glass fibers and nanoclay on wood flour-polypropylene composite properties. Eur. J. Wood Prod. (2013)

    Google Scholar 

  15. X. Zhang, X. Hao, J. Hao, Q. Wang, Heat transfer and mechanical properties of wood-plastic composites filled with flake graphite. Thermochimica Acta (2018)

    Google Scholar 

  16. Y.M. Lopez, J.B. Paes, D. Gustave, F.G. Gonçalves, F.C. Méndez, A.C. Theodoro Nantet, Production of wood-plastic composites using cedrela odorata sawdust waste and recycled thermoplastics mixture from post-consumer products—a sustainable approach for cleaner production in Cuba. J. Clean. Prod. 244, 118723 (2020)

    Google Scholar 

  17. X. Wang, F. Sotoudehniakarani, Z. Yu, J.J. Morrell, J. Cappellazzi, A.G. McDonald, Evaluation of corrugated cardboard biochar as reinforcing fiber on properties, biodegradability and weatherability of wood-plastic composites, polymer degradation and stability 168,108955 (2019)

    Google Scholar 

  18. H. Bouafif, A. Koubaa, P. Perré, A. Cloutier, Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Composites: Part A 40, 1975–1981 (2009)

    Google Scholar 

  19. S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund, M.P. Wolcott, Effects of processing method and fiber size on the structure and properties of wood–plastic composites. Compos. Part A 40, 80–85 (2009)

    Google Scholar 

  20. C. Gozdecki, A. Wilczyński, M. Kociszewski, S. Zajchowski, Properties of wood–plastic composites made of milled particleboard and polypropylene. Eur. J. Wood Prod 73, 87–95 (2015)

    Google Scholar 

  21. S.-Y. Leu, T.-H. Yang, S.-F. Lo, T.-H. Yang, Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs). Constr. Build. Mater. 29, 120–127 (2012)

    Article  Google Scholar 

  22. C. Burgstaller, Processing of thermal sensitive materials—a case study for wood plastic composites. Monatshefte für Chemie 138, 343–346 (2007)

    Google Scholar 

  23. F.M.B. Coutinho, T.H.S. Costa, D.L. Carvalho, Polypropylene–wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65, 1227–1235 (1997)

    Google Scholar 

  24. A. Toghyani, S. Matthews, J. Varies, Effect of dwell time and press speed on the forming quality of the press formed wood plastic composite product. Procedia CIRP 81, 524–528 (2019)

    Google Scholar 

  25. S.-K. Yeh, R.K. Gupta, Improved wood–plastic composites through better processing. Compos. Part A 39, 1694–1699 (2008)

    Google Scholar 

  26. M. Šercer, P. Raos, M. Rujnić-Sokele, Processing of wood-thermoplastic composites. Int. J. Mater. Form 2(1), 721–724 (2009)

    Article  Google Scholar 

  27. S.V. Rangaraj, L.V. Smith, The nonlinearly viscoelastic response of a wood-thermoplastic composite. Mech. Time-Dependent Mater. 3, 125–139 (1999)

    Article  Google Scholar 

  28. L.I. Dong-fang, L.I. Li, L.I. Jian-zhang, Preliminary study of the effects of EVA coupling agents on properties of wood-plastic composites. For. Stud. China 12(2), 90–94 (2010)

    Article  Google Scholar 

  29. M.A.B. Animpong, W.O. Oduro, J. Koranteng, K. Ampomah-Benefo, G. Boafo-Mensah, K. Akufo-Kumi, G.O. Tottimeh, J.Y. Amoah, Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels. South Afr. J. Chem. Eng. (2017)

    Google Scholar 

  30. M.J. Saad, Effect of maleated polypropylene (MAPP) on the tensile, impact and thickness swelling properties of kenaf core—polypropylene composites. J. Sci. Technol. 33–44 (2011)

    Google Scholar 

  31. J. Bhaskar, S. Haq, A.K.Pandey, N. Srivastava, Evaluation of properties of propylene-pine wood plastic composite. J. Mater. Environ. Sci. 3(3), 605–612 (2012)

    Google Scholar 

  32. O. Väntsi, T. Kärki, Different coupling agents in wood-polypropylene composites containing recycled mineral wool: a comparison of the effects. J. Reinf. Plast. Compos. 34(11), 879–895 (2015)

    Google Scholar 

  33. S. Haq, R. Srivastava, Measuring the influence of materials composition on nano scale roughness for wood plastic composites by AFM. Measurement (2016)

    Google Scholar 

  34. S. Haq, R. Srivastava, Wood polypropylene (pp) composites manufactured by mango wood waste with virgin or recycled pp: mechanical, morphology, melt flow index and crystalline behavior. J. Polym. Environ. (2016)

    Google Scholar 

  35. S. Chen, Y. Guo, J. Ruan, Q. Qiao, J. Zhang, L. She, X. Li, Wood-plastic composites prepared by waste polypropylene and toughening. Adv. Mater. Res. 878, 105–111 (2014)

    Google Scholar 

  36. N.M. Stark, R.H. White, S.A. Mueller, T.A. Osswald, Evaluation of various fire retardants for use in wood flour-polyethylene composites. Polym. Degrad. Stab. 95, 1903–1910 (2010)

    Article  Google Scholar 

  37. S. Matthews, A.E. Toghyani, S.-S. Ovaska, M. Hyvärinen, P. Tanninen, V. Leminen, A. Pesonen, H. Eskelinen, J. Varis, T. Kärki, Role of moisture on press formed products made of wood plastic composites. Procedia Manuf. 17, 1090–1096 (2018)

    Google Scholar 

  38. M.R. Pelaez-Samaniego, V. Yadama, E. Lowell, T.E. Amidon, T.L. Chaffee, Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung 67(2), 193–200 (2013)

    Google Scholar 

  39. D.S. Bajwa, S. Adhikari, J. Shojaeiarani, S.G. Bajwa, P. Pandey, S.R. Shanmugam, Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Constr. Build. Mater. 204, 193–202 (2019)

    Article  Google Scholar 

  40. C.-H. Lee, Wu. Tung-Lin, Y.-L. Chen, Wu. Jyh-Horng, Characteristics and discrimination of five types of wood-plastic composites by FTIR spectroscopy combined with principal component analysis. Holzforschung 64, 699–704 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dwivedi, N., Khare, A.P., Haq, S. (2021). Wood Plastic Composite: Emerging Material for an Environmental Safety—A Review. In: Baredar, P.V., Tangellapalli, S., Solanki, C.S. (eds) Advances in Clean Energy Technologies . Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-0235-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0235-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0234-4

  • Online ISBN: 978-981-16-0235-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics