Skip to main content

Impact of Various Heterogeneous Catalysts on the Production of Biodiesel

  • Conference paper
  • First Online:
Advances in Clean Energy Technologies

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

The world which we are momentarily breathing in is wavering every single day. At this point, we are subjected to rapid urbanization and because of it, there is always a need for energy as the augmentation of our realm and its prosperity hinges on the growth of energy. Thus, to encompass the energy which remains almost always insatiate to us, we depend on various fossil fuels to meet the energy demands to support our economic and social growth in the time of global precariousness exchange. Though we have used fossil fuels to allocate the energy around the globe as its requirement is increasing, it is becoming a rather daunting task for us to even have a quality life. Therefore, it is time now to look for alternate sources of energy which could replace fossil fuels that too at a decent price and lasts us for a longer period. A viable answer to our misery can be biodiesel. This fuel can be fabricated even utilizing waste frying oils by incorporating a varied variety of catalysts to accelerate the production of propellant. Also, various researches aid that it is capable to alleviate various greenhouse gases which are primarily present in our globe's environment. This review focuses on the work of various researchers who toiled over biodiesel manufacture via transesterification. Based on different doings, using heterogeneous catalysts for the synthesis of biofuel can be a better way as it is environmentally friendly. Moreover, this benign need no washing from water and separation of product from the catalyst is rather simpler. This current paper is a survey of the advances made in the growth and progression of heterogeneous catalysts which can be befitting for the manufacture of biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Dwivedi, P. Verma, M.P. Sharma, Optimization of storage stability for Karanja biodiesel using Box-Behnken design. Waste Biomass Valoriz. 9(4), 645–655 (2018). https://doi.org/10.1007/s12649-016-9739-2

    Article  Google Scholar 

  2. G. Dwivedi, S. Jain, M.P. Sharma, Impact analysis of biodiesel on engine performance—a review. Renew. Sustain. Energy Rev. 15(9), 4633–4641 (2011). https://doi.org/10.1016/j.rser.2011.07.089

    Article  Google Scholar 

  3. P. Verma, M.P. Sharma, G. Dwivedi, Impact of alcohol on biodiesel production and properties. Renew. Sustain. Energy Rev. 56, 319–333 (2016). https://doi.org/10.1016/j.rser.2015.11.048

    Article  Google Scholar 

  4. G. Dwivedi, M.P. Sharma, Application of Box-Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel 145, 256–262 (2015). https://doi.org/10.1016/j.fuel.2014.12.063

    Article  Google Scholar 

  5. M. Chhabra, B.S. Saini, G. Dwivedi, Impact assessment of biofuel from waste neem oil. Energy Sour. Part A Recover. Util. Environ. Eff., 1–12 (2019). https://doi.org/10.1080/15567036.2019.1623946

  6. Biodiesel: The Future Fuel of Automobiles in India—Analysis. https://www.news18.com/news/auto/biodiesel-the-future-fuel-of-automobiles-in-india-analysis-2029435.html. Accessed 30 July 2020

  7. S. Elias, A.M. Rabiu, B.I. Okeleye, V. Okudoh, O. Oyekola, Bifunctional heterogeneous catalyst for biodiesel production from waste vegetable oil. Appl. Sci. 10(9) (2020). https://doi.org/10.3390/app10093153

  8. M. Gohain, K. Laskar, H. Phukon, U. Bora, D. Kalita, D. Deka, Towards sustainable biodiesel and chemical production: Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves. Waste Manag. 102, 212–221 (2020). https://doi.org/10.1016/j.wasman.2019.10.049

    Article  Google Scholar 

  9. S.B. Aryasomayajula Venkata Satya Lakshmi, N. Subramania Pillai, M.S.B. Khadhar Mohamed, A. Narayanan, Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al2O3 as heterogeneous catalyst: a comparative study of RSM and ANN optimization. Brazilian J. Chem. Eng. 37(2), 351–368 (2020). https://doi.org/10.1007/s43153-020-00027-9

  10. M. Balajii, S. Niju, Banana peduncle—a green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renew. Energy 146, 2255–2269 (2020). https://doi.org/10.1016/j.renene.2019.08.062

    Article  Google Scholar 

  11. M.J. Haas, Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process. Technol. 86(10), 1087–1096 (2005). https://doi.org/10.1016/j.fuproc.2004.11.004

    Article  Google Scholar 

  12. P. Sudarsanam, E. Peeters, E.V. Makshina, V.I. Parvulescu, B.F. Sels, Advances in porous and nanoscale catalysts for viable biomass conversion. Chem. Soc. Rev. 48(8), 2366–2421 (2019). https://doi.org/10.1039/c8cs00452h

    Article  Google Scholar 

  13. A. Arumugam, P. Sankaranarayanan, Biodiesel production and parameter optimization: an approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from calophyllum inophyllum oil. Renew. Energy 153, 1272–1282 (2020). https://doi.org/10.1016/j.renene.2020.02.101

    Article  Google Scholar 

  14. Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: a review. Fuel 90(4), 1309–1324 (2011). https://doi.org/10.1016/j.fuel.2010.10.015

  15. K.H. Kay, S.M. Yasir, Biodiesel production from low quality crude jatropha oil using heterogeneous catalyst. APCBEE Procedia 3, 23–27 (2012). https://doi.org/10.1016/j.apcbee.2012.06.040

    Article  Google Scholar 

  16. E. Bet-Moushoul, K. Farhadi, Y. Mansourpanah, A.M. Nikbakht, R. Molaei, M. Forough, Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel 164, 119–127 (2016). https://doi.org/10.1016/j.fuel.2015.09.067

    Article  Google Scholar 

  17. X. Wu, F. Zhu, J. Qi, L.Z.-P.E. Sciences, Undefined, Biodiesel production from sewage sludge by using alkali catalyst catalyze (Elsevier, 2016). Accessed 29 July 2020. Available: https://www.sciencedirect.com/science/article/pii/S1878029616000050

  18. M.D.G. de Luna, J.L. Cuasay, N.C. Tolosa, T.W. Chung, Transesterification of soybean oil using a novel heterogeneous base catalyst: Synthesis and characterization of Na-pumice catalyst, optimization of transesterification conditions, studies on reaction kinetics and catalyst reusability. Fuel 209, 246–253 (2017). https://doi.org/10.1016/j.fuel.2017.07.086

    Article  Google Scholar 

  19. P.R. Pandit, M.H. Fulekar, Egg shell waste as heterogeneous nanocatalyst for biodiesel production: optimized by response surface methodology. J. Environ. Manage. 198, 319–329 (2017). https://doi.org/10.1016/j.jenvman.2017.04.100

    Article  Google Scholar 

  20. D. Munguia, F. Tzompantzi, A.G.-A.-E. Procedia, Undefined, ZnAl-Zr Hydrotalcite-Like Compounds Activated at Low Temperature as Solid Base Catalyst for the Transesterification of Vegetable Oils (Elsevier, 2017). Accessed 29 July 2020. Available https://www.sciencedirect.com/science/article/pii/S1876610217358253

  21. H. Hadiyanto, A.H. Afianti, U.I. Navi’A, N.P. Adetya, W. Widayat, H. Sutanto, The development of heterogeneous catalyst C/CaO/NaOH from waste of green mussel shell (Perna varidis) for biodiesel synthesis. J. Environ. Chem. Eng., 5(5), 4559–4563 (2017). https://doi.org/10.1016/j.jece.2017.08.049.

  22. J. Li, X. Fang, J. Bian, Y. Guo, C. Li, Microalgae hydrothermal liquefaction and derived biocrude upgrading with modified SBA-15 catalysts. Bioresour. Technol. 266, 541–547 (2018). https://doi.org/10.1016/j.biortech.2018.07.008

    Article  Google Scholar 

  23. M. Musil, F. Skopal, M. Hájek, A. Vavra, Butanolysis: Comparison of potassium hydroxide and potassium tert-butoxide as catalyst for biodiesel preparing from rapeseed oil. J. Environ. Manage. 218, 555–561 (2018). https://doi.org/10.1016/j.jenvman.2018.04.100

    Article  Google Scholar 

  24. A.A. Ayoola, O.S.I. Fayomi, I.F. Usoro, Data on PKO biodiesel production using CaO catalyst from Turkey bones. Data Br. 19, 789–797 (2018). https://doi.org/10.1016/j.dib.2018.05.103

    Article  Google Scholar 

  25. F. Kesserwan, M.N. Ahmad, M. Khalil, H. El-Rassy, Hybrid CaO/Al2O3 aerogel as heterogeneous catalyst for biodiesel production. Chem. Eng. J. 385(July), 2020 (2019). https://doi.org/10.1016/j.cej.2019.123834

    Article  Google Scholar 

  26. M. Gohain et al., Carica papaya stem: a source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation. Renew. Energy 147, 541–555 (2020). https://doi.org/10.1016/j.renene.2019.09.016

    Article  Google Scholar 

  27. Q. Shu, Q. Zhang, G. Xu, Z. Nawaz, D. Wang, J. Wang, Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Process. Technol. 90(7–8), 1002–1008 (2009). https://doi.org/10.1016/j.fuproc.2009.03.007

    Article  Google Scholar 

  28. F. Zhang, Y. Xie, W. Lu, X. Wang, S. Xu, X. Lei, Preparation of microspherical α-zirconium phosphate catalysts for conversion of fatty acid methyl esters to monoethanolamides. J. Colloid Interface Sci. 349(2), 571–577 (2010). https://doi.org/10.1016/j.jcis.2010.05.043

    Article  Google Scholar 

  29. F.E. Soetaredjo, A. Ayucitra, S. Ismadji, A.L. Maukar, KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Appl. Clay Sci. 53(2), 341–346 (2011). https://doi.org/10.1016/j.clay.2010.12.018

    Article  Google Scholar 

  30. M. Wu, J. Guo, Y. Li, Y. Zhang, Esterification of benzoic acid using Ti3AlC2 and SO42−/Ti3AlC2 ceramic as acid catalysts. Ceram. Int. 39(8), 9731–9736 (2013). https://doi.org/10.1016/j.ceramint.2013.04.077

    Article  Google Scholar 

  31. T. Chinese, C. Staff, Correction: esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chinese J. Catal. 36(4), 667 (2015). https://doi.org/10.1016/S1872-2067(15)60834-8

    Article  Google Scholar 

  32. A. Guldhe, B. Singh, I. Rawat, F. Bux, Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst. Chem. Eng. Res. Des. 92(8), 1503–1511 (2014). https://doi.org/10.1016/j.cherd.2014.05.012

    Article  Google Scholar 

  33. F.J. Gutiérrez Ortiz, F.J. Campanario, P.G. Aguilera, P. Ollero, Hydrogen production from supercritical water reforming of glycerol over Ni/Al2O3-SiO2 catalyst. Energy 84, 634–642 (2015). https://doi.org/10.1016/j.energy.2015.03.046

  34. C. Baroi, A.K. Dalai, Process sustainability of biodiesel production process from green seed canola oil using homogeneous and heterogeneous acid catalysts. Fuel Process. Technol. 133, 105–119 (2015). https://doi.org/10.1016/j.fuproc.2015.01.004

    Article  Google Scholar 

  35. K. Malins, V. Kampars, J. Brinks, I. Neibolte, R. Murnieks, Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation. Appl. Catal. B Environ. 176–177, 553–558 (2015). https://doi.org/10.1016/j.apcatb.2015.04.043

    Article  Google Scholar 

  36. S.H. Dhawane, T. Kumar, G. Halder, Parametric effects and optimization on synthesis of iron (II) doped carbonaceous catalyst for the production of biodiesel. Energy Convers. Manag. 122, 310–320 (2016). https://doi.org/10.1016/j.enconman.2016.06.005

    Article  Google Scholar 

  37. N.B. Ishola et al., Adaptive neuro-fuzzy inference system-genetic algorithm vs. response surface methodology: A case of optimization of ferric sulfate-catalyzed esterification of palm kernel oil. Process Saf. Environ. Prot. 111, 211–220 (2017). https://doi.org/10.1016/j.psep.2017.07.004

  38. A. Guldhe et al., Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst. Renew. Energy 105, 175–182 (2017). https://doi.org/10.1016/j.renene.2016.12.053

    Article  Google Scholar 

  39. N. Akkarawatkhoosith, A. Jaree, Catalyst-coated microchannel reactor via chemical bath deposition for biodiesel application. Appl. Surf. Sci. 456, 615–625 (2018). https://doi.org/10.1016/j.apsusc.2018.06.115

    Article  Google Scholar 

  40. R. D’Souza, T. Vats, A. Chattree, P.F. Siril, Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renew. Energy 126, 1064–1073 (2018). https://doi.org/10.1016/j.renene.2018.04.035

    Article  Google Scholar 

  41. D.M. Reinoso, G.M. Tonetto, Bioadditives synthesis from selective glycerol esterification over acidic ion exchange resin as catalyst. J. Environ. Chem. Eng. 6(2), 3399–3407 (2018). https://doi.org/10.1016/j.jece.2018.05.027

    Article  Google Scholar 

  42. A.L. de Lima, J.S.C. Vieira, C.M. Ronconi, C.J.A. Mota, Tailored hybrid materials for biodiesel production: tunning the base type, support and preparation method for the best catalytic performance. Mol. Catal. 458, 240–246 (2018). https://doi.org/10.1016/j.mcat.2017.09.032

    Article  Google Scholar 

  43. S. Lim, C.Y. Yap, Y.L. Pang, K.H. Wong, Biodiesel synthesis from oil palm empty fruit bunch biochar derived heterogeneous solid catalyst using 4-benzenediazonium sulfonate. J. Hazard. Mater. 390, 121532 (2020). https://doi.org/10.1016/j.jhazmat.2019.121532

  44. F. Deeba et al., Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production. Renew. Energy 159, 127–139 (2020). https://doi.org/10.1016/j.renene.2020.05.029

    Article  Google Scholar 

  45. F.C. Ballotin, M.J. Da Silva, R.M. Lago, A.P. De Carvalho Teixeira, Solid acid catalysts based on sulfonated carbon nanostructures embedded in an amorphous matrix produced from bio-oil: esterification of oleic acid with methanol. J. Environ. Chem. Eng. 8(2), 103674 (2020). https://doi.org/10.1016/j.jece.2020.103674

  46. J. Yan, X. Zheng, S. Li, A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: preparation, characterization and application in biodiesel production. Bioresour. Technol. 151, 43–48 (2014). https://doi.org/10.1016/j.biortech.2013.10.037

    Article  Google Scholar 

  47. L. Riadi, E. Purwanto, H.K.-P. Chemistry, Undefined, Effect of bio-based catalyst in biodiesel synthesis (2014). academia.edu. Accessed 29 July 2020. Available: https://www.academia.edu/download/45662058/1381808166_ICCE-procedia-chemistry-riadi.pdf

  48. J. Amoah et al., Conversion of Chlamydomonas sp. JSC4 lipids to biodiesel using Fusarium heterosporum lipase-expressing Aspergillus oryzae whole-cell as biocatalyst. Algal Res. 28, 16–23 (2017). https://doi.org/10.1016/j.algal.2017.10.003

    Article  Google Scholar 

  49. A. Guldhe, B. Singh, T. Mutanda, K. Permaul, F. Bux, Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew. Sustain. Energy Rev. 41, 1447–1464 (2015). https://doi.org/10.1016/j.rser.2014.09.035

  50. S. Imanparast, M.A. Faramarzi, J. Hamedi, Production of a cyanobacterium-based biodiesel by the heterogeneous biocatalyst of SBA-15@oleate@lipase. Fuel 279(December), 2020 (2019). https://doi.org/10.1016/j.fuel.2020.118580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dwivedi, G., Samantaray, D., Pati, S., Pandey, S., Gaur, A. (2021). Impact of Various Heterogeneous Catalysts on the Production of Biodiesel. In: Baredar, P.V., Tangellapalli, S., Solanki, C.S. (eds) Advances in Clean Energy Technologies . Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-0235-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0235-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0234-4

  • Online ISBN: 978-981-16-0235-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics