Skip to main content

Abstract

The historical changes in temperature of the earth have been the concern of people since time immemorial. The exponential rise in the earth's temperature affects the production of crop plants. Taking the seriousness of such changes in temperature, it was considered important to measure them and their impact on agricultural crop production. Various methods, technologies and equipment for measuring the surface temperature of plants and soil are described in this chapter. Subsequently various facilities and techniques to study the response of crop plants to the changes in the earth's temperature are explained along with their advantages and disadvantages. The devices described here include infrared thermometer, thermistor, thermocouple, etc. The facilities include temperature gradient chamber (TGC), temperature gradient greenhouses (TGG), SPAR system, infrared warming system, free air temperature enrichment technology (FATE) and soil warming system. Various mitigation technologies to counter the adverse effect of temperature changes on crop and soil systems are discussed. A sizable number of morphological, physiological, biochemical and anatomical measures and agronomic technologies help in controlling the adverse effects of temperature stresses on crops and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashraf, M. 2014. Stress induced changes in wheat grain composition and quality. Critical Rev. Food Sci. & Nutr.54: 1576-1583

    Article  CAS  Google Scholar 

  • Balla, K., Bencze, S, Janda, T. and Verisz, O., 2009. Analysis of heat stress tolerance in winter wheat. Acta. Agron. Hungari, 57: 437-444.

    Article  Google Scholar 

  • Chakraborty, U. and Pradhan, D., 2011. High temperature induced oxidative stress in Lens culinaris. Role of anti-oxidants and amelioration of stress by chemical pretreatments. J. Plant Interact. 6: 43-52.

    Article  CAS  Google Scholar 

  • Chauhan, S. 2005. Ph.D. thesis HNB Garhwal Univ. Physiological and molecular basis of heat tolerance with emphasis on oxidative stress metabolism in wheat.

    Google Scholar 

  • Ciarmiello, L.F., Woodrow, P., Fuggi, A., Pontecorvo, G. and Carillo, P. 2011. Plant genes for abiotic stress. In Shanker, A.K. & Venketswar, P. (Eds.) Abiotic stress in plants - Mechanisms and adaptations. In Tech. Rijeka, Croatia pp 283-308.

    Google Scholar 

  • Coventry, D.R., Gupta, R.K., Yadav, R.S., Poswal, R.S., Chhokar, R.K., Sharma, V.K., Yadav, S.C., Gill, A., Kumar, P., Mehta, S.G., Kleeman, A., Bonamano, A. and Cumins, J.A., 2011. Wheat quality and productivity as affected by varieties and sowing time in Haryana, India. Field Crop Res. 123: 214-225.

    Article  Google Scholar 

  • Das, R. and Uprety, D.C. (2006). Interactive effect of moisture stress and elevated CO2 on oxidative stress in Brassica species. J. Food, Agric. and Environment, Finland, 4:298-305

    CAS  Google Scholar 

  • Dat, J.F., Lopez-Delgado, H, Foyer, C.H. and Scott, I.M. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116:1351-1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejonge, K.C., Taghvaeian, S., Trout, T.J. and Comas, L.H. 2015. Comparison of canopy temperature-based water stress indices for maize. Agric. Water Management. 156: 51-62.

    Article  Google Scholar 

  • Ding, W., Song, L., Wang X. and Bi, Y. 2010. Effect of abscisic acid on heat stress tolerance in the Calli from two ecotypes of Phragmites communis. Biol. Planta. 54: 607-613.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Vanacker, H., Gornez, L.D., Harbinson, J. 2002. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol. Biochem. 40, 659-668.

    Article  CAS  Google Scholar 

  • Fritschi, F.B., Boote, K.J., Sollenberger, L. and Sinclair, T.R. 1999. Carbon dioxide and temperature effects on forage establishment: photosynthesis and biomass production. Global Change Biology 5:441-453.

    Article  Google Scholar 

  • Geiger DR, Servaites JC, Shieh W-J (1992) Balance in the source-sink system: a factor in crop productivity. In: Baker NR, Thomas H (eds), Crop Photosynthesis: Spatial and Temporal Determinants, pp. 155-176. Topics in Photosynthesis, Vol. 12. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Grime, J.P. 1989, Ecological effects of climate change on plant populations and vegetation composition with particular reference to British flora. In Climate change and plant genetic resources (Eds. Jackson, M., Ford-Loyd, B.V. and Parry, M.L.) pp. 40-60, Belhaven press, London.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R. and Fujita, M. 2013. Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14:9643-9684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horie, T., Nakano, J., Nakagawa, H., Wada, K., Kim, H.Y. and Seo, T. 1991. Effect of elevated CO2 and high temperature on growth and yield of rice. 1. Development of temperature gradient tunnels. Japanese J. Crop Sci. 60; 127-128.

    Google Scholar 

  • Horie, T., Nakagawa, H., Nakano, J., Hamotani, K. and Kim, H.Y., 1995. Temperature gradient chambers for research on global environmental change. III. A system designed for rice in Kyoto, Japan. Plant Cell and Environ. 18: 1064-1069.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II, III to the Fourth Assessment Report of the International Panel on Climate Change. [Core Writing Team, R.K. Pachauri, and A. Reisinger (eds.)]. IPCC, Geneva, Switzerland, 104 pp.

    Google Scholar 

  • Kaushal, N., Gupta, K., Bhandari, K., Kumar, S., Thakur, P. and Nayyar, H. 2011. Proline induces heat tolerance in chickpea (Cicer arietinum L) plants by protecting vital enzymes of carbon & antioxidation metabolism. Physiol. Mol. Biol. Plants. 17:203-213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khicher, M.L. and Niwar, R. 2007. Thermal effect on growth and yield of wheat under different soil environment and plant systems. Indian J. Agric. Res. 41: 92-96.

    Google Scholar 

  • Kimball B.A., Conley M.M., Wang S., Lin X., Luo C., Morgan J. & Smith D. (2008) Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14, 309–320.

    Article  Google Scholar 

  • Kimball, B.A. 2005. Theory and performance of an infrared heater for ecosystem warming. Global Change Biology, 11: 2041-2056.

    Google Scholar 

  • Kocsy, G., Szali, G. & Galiba, G. 2002. Effect of heat stress on glutathione biosynthesis in wheat. Acta. Biol. Szeged, 46:71-72.

    Google Scholar 

  • Kumar, S., Gupta, D. & Nayyar, H. 2012. Comparative response of maize and rice genotypes to heat stress. Status of oxidative stress and anti oxidants. Acta. Physiol. Plant. 34: 75-86.

    Article  CAS  Google Scholar 

  • Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., … & Friedlingstein, P. (2009). Trends in the sources and sinks of carbon dioxide. Nature geoscience, 2(12), 831-836.

    Google Scholar 

  • Meehl GA, et al. Global climate projections. In: Solomon S, et al., editors. Climate Change 2007: The Physical Science Basis. Cambridge, UK: Cambridge Univ Press; 2007. pp. 747–845.

    Google Scholar 

  • Murchie, E.H. and Niyogi, K.K. 2011. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 155:86-92.

    Article  CAS  PubMed  Google Scholar 

  • Nijs, I, Ferris, R., Blume, H., Hendry, G. and Impens, I., 1997. Stomatal regulation in a changing climate: Afield study using Free Air Temperature Increase (FATI) and Free air CO2 enrichment (FACE). Plant Cell Environ. 20: 1041-1050.

    Article  Google Scholar 

  • Nissen, T.E. and Orcutt, D.M. 1996. Plant membranes as environmental stresses. In “Physiology of plants under abiotic stress factors” John Wiley & Sons inc. New York, USA, pp. 66-68.

    Google Scholar 

  • Ottman, M.J., Kimball, B.A., White, J.W. and Wall, G.W., 2012. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron. J. 104: 7-16.

    Article  Google Scholar 

  • Palta, J.P. (2000). Stress interactions at cellular and membrane levels. Hort. Sci. 25: 1377.

    Google Scholar 

  • Pan, D. 1996. Soybean responses to elevated temperature and doubled CO2. Ph.D. dissertation. University of Florida, USA. 227p.

    Google Scholar 

  • Prasad, P.V.V., K.J. Boote, and L.H. Allen, Jr. 2006. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to high tissue temperature. Agric. For. Met. 139:237–251.

    Article  Google Scholar 

  • Radin, J.W., Lu, Z.M., Percy, R.G. and Zeiger, E. 1994. Genetic variation for stomatal conductance in Pima cotton and its relation to improvements for heat adaptation. Proc. Natl. Acad. Sci. USA, 91: 7217-7221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rani, B., Dhawan, K., Jain, V., Chopra, M.L. and Singh, D. 2013. High temperature induced changes in antioxidative enzymes in Brassica juncea L. Czern & Coss. Available online http://www.australianoilseeds.com/pdffile0003/6861/96.

  • Rasheed, R., Wahid, A, Farooqi, M., Hussain, I. and Basra, S.M.A., 2011. Role of proline and glycine betaine pretreatment in improving heat tolerance of sprouting sugarcane buds (Saccharum, sp.). Plant Growth Regul.65: 35-45.

    Article  CAS  Google Scholar 

  • Rawson, H.M. 1995. Response of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. Aust. J. Plant Physiol., 22: 23-32.

    Google Scholar 

  • Rawal, S., Rana, N.S. and Kumar, D. 2007. Mitigation of heat stress in potato through calcium nutrition. Potato J. 34: 111-112.

    Google Scholar 

  • Reddy, K.R., J.T. Baker, V.R. Reddy, J. McKinion, L. Tarpley, and J.J. Read. 2001. Soil Plant–Atmosphere–Research (SPAR) facility: A tool for plant research and modeling. Biotronics 30:27–50.

    Google Scholar 

  • Rodriguez, M., Canales, E. and Borras Hidalgo, O. 2005 Molecular aspects of abiotic stress in plants. Biotechnol. Appl. 22:1-10.

    CAS  Google Scholar 

  • Sairam, R.K., Srivastava, G.C. and Saxena, D.C. 2000. Increased antioxidant activity under elevated temperature: A mechanism of heat stress tolerance in wheat genotypes. Biol. Planta. 43: 245-251.

    Article  CAS  Google Scholar 

  • Sarieva, G. E., Kenzhebaeva, S. S. and Lichtentheler, H.K. 2010. Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions. Russian J. Plant Physiol. 57:28-36.

    Article  CAS  Google Scholar 

  • Siebold, M., and Von Tiedemann, A. 2012. Potential effects of global warming on oilseed rape pathogens in northern Germany. Fungal Ecology, 5:62-72.

    Article  Google Scholar 

  • Song, L., Ding, W, Zhao, M. et al 2006. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci. 171: 449-458.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, S., Pathak, A.D., Gupta, P.S., Srivastava, A.K. and Srivastava, A.K. 2012. Hydrogen peroxide scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J. Environ. Biol. 33: 657-661.

    CAS  PubMed  Google Scholar 

  • Stoller J., Liptay, A. and Salzman, R. 2012. Composition and methods for stress mitigation in plants. Publ. No. US2012/0252673. A 1.

    Google Scholar 

  • Tahar Al, Ali B, Hwary E L and Samia O Y. (2011). Effect of skipping irrigation on growth, yield, yield components and water use efficiency of wheat in semiarid region of Sudan. Agriculture and Biology Journal of North America. 2(60): 1003-1009.

    Google Scholar 

  • Tang Y, Wu X, Li C, Wu C, Ma X, Huang G. 2013. Long-term effect of year-round tillage patterns on yield and grain quality of wheat. Plant Prod. Sci. 2013; 365–373.

    Article  Google Scholar 

  • Torriani DS, Calanca P, Schmid S, Beniston M, Fuhrer J (2007) Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Clim Res 34:59−69.

    Article  Google Scholar 

  • Uchida, A.T., Jagendorf, T. and Hibino, 2002. Effect of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance of rice. Plant Sci. 163: 515-523.

    Article  CAS  Google Scholar 

  • Uprety, D.C. and Reddy, V.R. 2008. In: Rising atmospheric CO2 and Crops., ICAR Publications, DIPA, pp. 1-144.

    Google Scholar 

  • Uprety, D.C. and Reddy, V.R. (2016). Crop responses to global warming. Pp. 1-125. Springer, Nature, IsBN 978-981-10-2003-2

    Google Scholar 

  • Uprety, D.C., Tomar, O.P.S.and Sirohi, G.S. (1980). Study on the contribution of nodal and seminal roots to the growth and yield of wheat varieties. Indian J. Pl. Physiol. 23:206-219.

    Google Scholar 

  • Wahid, A., Gilani, S., Ashraf, M. and Foolad, M.R. 2007. Review heat tolerance in plants: an overview. Environ. Expt. Bot.31: 199-223.

    Article  Google Scholar 

  • Wang, W., Vinocur, B., Shoreyov, O. and Altman, A. 2004, Role of plant heat shock proteins and molecular chaperons in the abiotic stress response. Trends Plant Sci. 9:244-252.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L.J. and Li, S.H. 2006. Salicylic acid induced heat or cold tolerance in relation Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci, 170: 685-694.

    Article  CAS  Google Scholar 

  • Wang L.J., Fan, L., Loeschar, W., Duan, W., Liee G.J., Chang, J.S., Luo, H.B. and Li, S.H. 2010. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grape wine leaves. BMC. Plant Biol. 10:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waraich, E.A., Ahmad, R., Halim, A. and Aziz, T. 2012. Alleviation of temperature stress by nutrient management in crop plants - a review. J. Soil Sci. & Plant Nutr. 12: 221-244.

    Article  Google Scholar 

  • White, J.W., Kimball, B.A., Wall, G.W., Ottman, M.J. and Hunt, L.A., 2011. Response of time of anthesis and maturity to sowing dates and infrared warming in spring wheat. Field Crop Res. 124: 213-222.

    Article  Google Scholar 

  • Zrobek-Sokolink, A. 2012. The temperature stress and response of plants; in Mahmood G and Prasad, M.N.V. (Editors) Environmental adaptations and stress tolerance in plants in the era of climate change Springer, New York, NY, USA. pp. 113-134.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uprety, D.C., Saxena, P. (2021). Temperature. In: Technologies for Green House Gas Assessment in Crop Studies. Springer, Singapore. https://doi.org/10.1007/978-981-16-0204-7_6

Download citation

Publish with us

Policies and ethics