Skip to main content

Abstract

Tropospheric ozone is one of the GHGs, which adversely affects the productivity of crop plants and ecosystems, whereas stratospheric ozone protects people from harmful UV radiations. The ozone-generating system to study the effect of O3 on agricultural crops is described in detail. Open-top chambers (OTC) using filtered charcoal and ozone FACE system for crop response studies are explained. Modelling ozone effects using process-based interactions with environmental factors has been emphasized in this chapter. Mitigation of the adverse ozone impact on crop plants is explained in terms of the alteration in signal transduction, reducing the stomatal conductance to decrease the entry of ozone in the cells, reduction of toxic effects of tropospheric ozone by altering the oxystress through changes in the balance between the ROS and antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashmore, M.R. (2002). Effects of oxidants at the whole plant and community level. In: Bell, J.N.B. and Treshow, M.(Eds.). Air pollution and plant life. Wiley, Chichester, UK, pp. 89-118.

    Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970.

    Google Scholar 

  • Ewert, F. and Pleijel, H. (1999). Phenological development, leaf emergence, tillering and leaf area index and duration of spring wheat across Europe in response to CO2 and ozone. Europe. J. Agron. 10:171-184.

    Article  Google Scholar 

  • Ewert F, Porter JR. Ozone effects on wheat in relation to elevated CO2: modelling short-term and long-term responses of leaf photosynthesis and leaf duration, Global Change Biology, 2000, vol. 6. 735-750.

    Article  Google Scholar 

  • Feng, Z, Pang, J., Nouchi, I., Kobayashi, K., Yamakawa, T. and Zhu, J. (2010). Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open air field conditions. Environ. Pollution. 158: 3539-3595.

    Article  CAS  Google Scholar 

  • Fuhrer, J., Skarby, L. and Ashmore, M.R. (1997) Critical levels of ozone effects on vegetation in Europe. Environ. Pollut. 97 (1-2):91-106.

    Article  CAS  Google Scholar 

  • Heagle, A.S., Body, D.E. and Heck, W.W. (1973). An open top chamber to assess the impact of air pollution on plants. J. Environ. Qual. 2(3):365-368.

    Article  CAS  Google Scholar 

  • Houghton, J.T. et al (eds.) (2001). Climate change, 2001: The scientific basis. Contribution of working group 1 to the 3rd assessment report of the IPCC, Cambridge Univ. Press, Cambridge, U.K.

    Google Scholar 

  • Lin, D.I., Lur, H.S. and Chu, C. (2001).Effects of abscisic acid on the ozone tolerance of rice seedlings. Plant Growth Regul. 35: 295-300.

    Article  CAS  Google Scholar 

  • Long, S.P., Ainsworth, E.A., Leaky, A.D.B., Nosberger, J. and Ort, D.R. (2006)., Food for Thought: Lower than expected crop yield stimulation with rising CO2 concentrations. Science, 312:1918-1921.

    Article  CAS  Google Scholar 

  • Mills G., Pleijel H., Malley C.S., Sinha B., Cooper O.R., Schultz M.G., Neufeld H.S., Simpson D., Sharps K., Feng Z., Gerosa G., Harmens H., Kobayashi K., Saxena P., Paoletti E., Sinha V., Xu X. (2018) Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa: Science of the Anthropocene, 6, 47.

    Google Scholar 

  • Musselman, R.C., McCool, P.M. and Lefohn, A.S. (1994). Ozone descriptor for an air quality standard to protect vegetation. J. Air Waste Manag. Assoc.44 (12): 1383-1390.

    Article  CAS  Google Scholar 

  • Nouchi, I., Aoki, K., & Kobayashi, K. (2019). How much can antioxidative ascorbic acid located in leaf apoplast (cell wall) detoxify ozone? (I) A simulation model based on gas diffusion transfer accompanied with chemical reaction. Journal of Japan Society for Atmospheric Environment, 54, 113–127.

    Google Scholar 

  • Pleijel H., Danielsson H., Emberson L., Ashmore M.R., and Mills G., 2007. Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux–response relationships for European wheat and potato. Atmos. Environ. 41: 3022–3040.

    Article  CAS  Google Scholar 

  • Sanmartin, M., Drogoudi, P.D., Lyons, T., Pateraki, I., Barnes, J., Kanellis, A.K., 2002. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216, 918–928.

    Article  Google Scholar 

  • Tang, H., Liu, G., Han, Y., Zhu, J. and Kobayashi, K. (2011). A system of free air ozone concentration elevation with rice and wheat; Control performance and ozone exposure regime. Atmospheric Environment, 45 (35):6276-6282.

    Article  CAS  Google Scholar 

  • USEPA (1999). Alternative disinfectants and oxidants: Guidance Manuel. EPA 815-R-99-014.

    Google Scholar 

  • van Oijen M, Dreccer MF, Firsching KH, Schnieders B. Simple equations for dynamic models of the effects of CO2 and O-3 on light-use efficiency and growth of crops, Ecological Modelling, 2004, vol. 179, 39-60.

    Article  Google Scholar 

  • van Oijen M, Ewert F. The effects of climatic variation in Europe on the yield response of spring wheat cv. Minaret to elevated CO2 and O3: an analysis of open-top chamber experiments by means of two crop growth simulation models, European Journal of Agronomy, 1999, vol. 10, 249-264.

    Article  Google Scholar 

  • Vapaavuori, E., Oksanen, E., Holopanian, J.K., Holopanian, T., Heiskanen, J., Julkunen-Tiitto, R., Kasurinen, A., Laitnen, J., Oksanen, E., Peltonnen, P., Poteri, M., Repo, T., Riikonen, J. and Sirjala, L. (2002). Technical Report; Open top chamber fumigation of cloned silver birch (Betula pendula. Roth) trees to elevated CO2 and Ozone, Description of fumigation system and the experimental site. http://www.metla.fi/julkisut/mt/838.

  • Wang, X., Zheng, Q., Feng, Z., Xie, J., Feng, Z, Ouyang, Z. and Manning, W.J. (2008). Comparison of a diurnal v/s steady state ozone exposure profile on growth and yield of oilseed rape (Brassica napus L.) in open top chambers in the Yangtze delta, China. Environ. Pollut. 156:449-453.

    Article  CAS  Google Scholar 

  • Yendrek, C.R., Koester, R.P., Ainsworth, E.A., 2015. A comparative analysis of transcriptomic, biochemical and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops. J. Exp. Bot. 66, 7101–7112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uprety, D.C., Saxena, P. (2021). Ozone. In: Technologies for Green House Gas Assessment in Crop Studies. Springer, Singapore. https://doi.org/10.1007/978-981-16-0204-7_5

Download citation

Publish with us

Policies and ethics