Skip to main content

Physiology of Normal Sleep

  • Chapter
  • First Online:
Sleep and Neuropsychiatric Disorders

Abstract

Several neurotransmitter systems and circulating factors regulate rapid eye movement (REM) sleep, non-REM (NREM) sleep, and wakefulness (W). The nuclei involved in the occurrence of W are located in the brainstem, hypothalamus, and the basal forebrain (BFB). These corresponding to the brainstem include the dorsal raphe nucleus (serotonergic neurons); locus coeruleus (noradrenergic neurons); ventral tegmental area, substantia nigra compacta, and ventral periaqueductal gray matter (dopaminergic neurons); and laterodorsal and pedunculopontine tegmental nuclei (cholinergic neurons). The structures found in the hypothalamus comprise the tuberomammillary nucleus (histaminergic neurons) and the posterior and lateral hypothalamus around the fornix (orexinergic neurons). The cholinergic neurons of the BFB are located mainly in the diagonal band of Broca, substantia innominata, and the medial septal area.

The NREM sleep-inducing system comprises neurons located in the preoptic area, which contains Gamma-Aminobutyric Acid (GABA) and galanin, and cells containing melanin-concentrating hormone located in the lateral hypothalamus and incertohypothalamic area. The latter is also involved in the regulation of REM sleep. Somnogens, including adenosine (formed mainly by the breakdown of adenosine nucleotides), prostaglandin D2 (which is mainly present in the leptomeninges, choroid plexus, and oligodendrocytes), nitric oxide (synthesized predominantly from L-arginine), and cytokine promote also sleep, mainly NREM sleep. Melatonin is a hormone secreted during the night from the pineal gland and has a weak sleep-promoting effect in humans.

The subcoeruleus nucleus has been proposed as the critical area for REM sleep regulation in the cat. Its equivalent in the rat is called the sublaterodorsal nucleus. The REM sleep generation region includes mainly glutamatergic and GABAergic neurons.

Sleep timing depends on two factors, sleep debt (process S; homeostasis) and circadian control (process C). When process S approaches the upper boundary, it triggers sleep. On the other hand, the markers of process C include melatonin and core body temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, Troester MT, Vaughn BV. AASM scoring manual updates for 2020 (version 2.6). J Clin Sleep Med. 2020;13(5):665–6. https://doi.org/10.5664/jcsm.6576.

    Article  Google Scholar 

  2. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262(5134):679–85. https://doi.org/10.1126/science.8235588.

    Article  CAS  PubMed  Google Scholar 

  3. Crunelli V, David F, Lorincz ML, Hughes SW. The thalamocortical network as a single slow wave-generating unit. Curr Opin Neurobiol. 2015;31:72–80. https://doi.org/10.1016/j.conb.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  4. Amici R, Cerri M, Parmeggiani P. Overview of physiological processes during sleep. In: Kushida C, editor. The encyclopedia of sleep. Waltham: Academic; 2013.

    Google Scholar 

  5. Pace-Schott EF, Hobson JA. Basic mechanisms of sleep: new evidence on the neuroanatomy and neuromodulation of the NREM-REM cycle. In: Charney D, Nemeroff C, editors. Neuropsychopharmacology: the fifth generation of progress. Philadelphia: Lippincott: Williams and Wilkins; 2002. p. 1859–77.

    Google Scholar 

  6. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087–187. https://doi.org/10.1152/physrev.00032.2011.

    Article  CAS  PubMed  Google Scholar 

  7. Espana RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep. 2011;34(7):845–58. https://doi.org/10.5665/SLEEP.1112.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol. 2011;2:14. https://doi.org/10.3389/fneur.2011.00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reinoso-Suarez F, de Andres I, Rodrigo-Angulo ML, Garzon M. Brain structures and mechanisms involved in the generation of REM sleep. Sleep Med Rev. 2001;5(1):63–77. https://doi.org/10.1053/smrv.2000.0136.

    Article  PubMed  Google Scholar 

  10. Monti JM. The role of tuberomammillary nucleus histaminergic neurons, and of their receptors in the regulation of sleep and wakefulness. In: Mallick BN, Pandi-Perumal SR, McCarley RW, Morrison AS, editors. Rapid eye movement sleep—regulation and function. Cambridge: Cambridge University; 2011. p. 223–33.

    Chapter  Google Scholar 

  11. Monti JM. The neurotransmitters of sleep and wake, a physiological reviews series. Sleep Med Rev. 2013;17(4):313–5. https://doi.org/10.1016/j.smrv.2013.02.004.

    Article  PubMed  Google Scholar 

  12. Monti JM, Jantos H. The effects of local microinjection of selective dopamine D1 and D2 receptor agonists and antagonists into the dorsal raphe nucleus on sleep and wakefulness in the rat. Behav Brain Res. 2018;339:11–8. https://doi.org/10.1016/j.bbr.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  13. Monti JM, Torterolo P, Pandi Perumal SR. The effects of second generation antipsychotic drugs on sleep variables in healthy subjects and patients with schizophrenia. Sleep Med Rev. 2017;33:51–7. https://doi.org/10.1016/j.smrv.2016.05.002.

    Article  PubMed  Google Scholar 

  14. Romigi A, Vitrani G, Lo Giudice T, Centonze D, Franco V. Profile of pitolisant in the management of narcolepsy: design, development, and place in therapy. Drug Des Devel Ther. 2018;12:2665–75. https://doi.org/10.2147/DDDT.S101145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calik MW. Update on the treatment of narcolepsy: clinical efficacy of pitolisant. Nat Sci Sleep. 2017;9:127–33. https://doi.org/10.2147/NSS.S103462.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schwartz JC. The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol. 2011;163(4):713–21. https://doi.org/10.1111/j.1476-5381.2011.01286.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guevarra JT, Hiensch R, Varga AW, Rapoport DM. Pitolisant to treat excessive daytime sleepiness and cataplexy in adults with narcolepsy: rationale and clinical utility. Nat Sci Sleep. 2020;12:709–19. https://doi.org/10.2147/NSS.S264140.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci. 2014;34(13):4708–27. https://doi.org/10.1523/JNEUROSCI.2617-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han Y, Shi YF, Xi W, Zhou R, Tan ZB, Wang H, Li XM, Chen Z, Feng G, Luo M, Huang ZL, Duan S, Yu YQ. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol. 2014;24(6):693–8. https://doi.org/10.1016/j.cub.2014.02.011.

    Article  CAS  PubMed  Google Scholar 

  20. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85. https://doi.org/10.1016/s0092-8674(00)80949-6.

    Article  CAS  PubMed  Google Scholar 

  21. Rashotte ME, Pastukhov IF, Poliakov EL, Henderson RP. Vigilance states and body temperature during the circadian cycle in fed and fasted pigeons (Columba livia). Am J Phys. 1998;275(5):R1690–702. https://doi.org/10.1152/ajpregu.1998.275.5.R1690.

    Article  CAS  Google Scholar 

  22. Almeneessier AS, Alzoghaibi M, BaHammam AA, Ibrahim MG, Olaish AH, Nashwan SZ, BaHammam AS. The effects of diurnal intermittent fasting on the wake-promoting neurotransmitter orexin-A. Ann Thorac Med. 2018;13(1):48–54. https://doi.org/10.4103/atm.ATM_181_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mieda M. The roles of orexins in sleep/wake regulation. Neurosci Res. 2017;118:56–65. https://doi.org/10.1016/j.neures.2017.03.015.

    Article  CAS  PubMed  Google Scholar 

  24. Torterolo P, Monti JM, Vanini G. Neurochemistry and pharmacology of sleep. In: Murillo E, editor. The behavioral, molecular, pharmacological, and clinical basis of the sleep-wake cycle. Elsevier; 2019. pp. 45–83.

    Google Scholar 

  25. Monti JM. General principle of treatment of sleep dysfunction and pharmacology of drugs used in sleep disorders. In: Chockroverty S, editor. Sleep disorders medicine. New York: Springer; 2017. p. 1187–207.

    Chapter  Google Scholar 

  26. Mizoguchi A, Eguchi N, Kimura K, Kiyohara Y, Qu WM, Huang ZL, Mochizuki T, Lazarus M, Kobayashi T, Kaneko T, Narumiya S, Urade Y, Hayaishi O. Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2001;98(20):11674–9. https://doi.org/10.1073/pnas.201398898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ueno R, Ishikawa Y, Nakayama T, Hayaishi O. Prostaglandin D2 induces sleep when microinjected into the preoptic area of conscious rats. Biochem Biophys Res Commun. 1982;109(2):576–82. https://doi.org/10.1016/0006-291x(82)91760-0.

    Article  CAS  PubMed  Google Scholar 

  28. Kapas L, Fang J, Krueger JM. Inhibition of nitric oxide synthesis inhibits rat sleep. Brain Res. 1994;664(1–2):189–96. https://doi.org/10.1016/0006-8993(94)91969-0.

    Article  CAS  PubMed  Google Scholar 

  29. Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol. 2016;26(10):R432–43. https://doi.org/10.1016/j.cub.2016.04.011.

    Article  CAS  PubMed  Google Scholar 

  30. Van Laake LW, Luscher TF, Young ME. The circadian clock in cardiovascular regulation and disease: lessons from the nobel prize in physiology or medicine 2017. Eur Heart J. 2018;39(24):2326–9. https://doi.org/10.1093/eurheartj/ehx775.

    Article  PubMed  Google Scholar 

  31. Zelinski EL, Deibel SH, McDonald RJ. The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body. Neurosci Biobehav Rev. 2014;40:80–101. https://doi.org/10.1016/j.neubiorev.2014.01.007.

    Article  PubMed  Google Scholar 

  32. Kerkhof GA. Inter-individual differences in the human circadian system: a review. Biol Psychol. 1985;20(2):83–112. https://doi.org/10.1016/0301-0511(85)90019-5.

    Article  CAS  PubMed  Google Scholar 

  33. Qasrawi SO, Pandi-Perumal SR, BaHammam AS. The effect of intermittent fasting during Ramadan on sleep, sleepiness, cognitive function, and circadian rhythm. Sleep Breath. 2017;21(3):577–86. https://doi.org/10.1007/s11325-017-1473-x.

    Article  PubMed  Google Scholar 

  34. St-Onge MP, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, Varady K. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135(9):e96–e121. https://doi.org/10.1161/CIR.0000000000000476.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Almeneessier AS, Pandi-Perumal SR, BaHammam AS. Intermittent fasting, insufficient sleep, and circadian rhythm: interaction and effects on the cardiometabolic system. Curr Sleep Med Rep. 2018;4(3):179–95.

    Article  Google Scholar 

  36. Reutrakul S, Knutson KL. Consequences of circadian disruption on cardiometabolic health. Sleep Med Clin. 2015;10(4):455–68. https://doi.org/10.1016/j.jsmc.2015.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hsu PY, Harmer SL. Global profiling of the circadian transcriptome using microarrays. Methods Mol Biol. 2014;1158:45–56. https://doi.org/10.1007/978-1-4939-0700-7_3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Labrecque N, Cermakian N. Circadian clocks in the immune system. J Biol Rhythm. 2015;30(4):277–90. https://doi.org/10.1177/0748730415577723.

    Article  CAS  Google Scholar 

  39. Kalsbeek A, Fliers E. Daily regulation of hormone profiles. Handb Exp Pharmacol. 2013;217:185–226. https://doi.org/10.1007/978-3-642-25950-0_8.

    Article  CAS  Google Scholar 

  40. Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.

    CAS  PubMed  Google Scholar 

  41. Daan S, Beersma DG, Borbely AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Phys. 1984;246(2 Pt 2):R161–83. https://doi.org/10.1152/ajpregu.1984.246.2.R161.

    Article  CAS  Google Scholar 

  42. Borbely AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016;25(2):131–43. https://doi.org/10.1111/jsr.12371.

    Article  PubMed  Google Scholar 

  43. Krauchi K, Wirz-Justice A. Circadian clues to sleep onset mechanisms. Neuropsychopharmacology. 2001;25(5 Suppl):S92–6. https://doi.org/10.1016/S0893-133X(01)00315-3.

    Article  CAS  PubMed  Google Scholar 

  44. Tobler I, Borbely AA, Groos G. The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci Lett. 1983;42(1):49–54. https://doi.org/10.1016/0304-3940(83)90420-2.

    Article  CAS  PubMed  Google Scholar 

  45. Trachsel L, Edgar DM, Seidel WF, Heller HC, Dement WC. Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration. Brain Res. 1992;589(2):253–61. https://doi.org/10.1016/0006-8993(92)91284-l.

    Article  CAS  PubMed  Google Scholar 

  46. Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Phys. 1999;277(4 Pt 2):R1152–63. https://doi.org/10.1152/ajpregu.1999.277.4.r1152.

    Article  CAS  Google Scholar 

  47. Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995;15(5 Pt 1):3526–38.

    Article  CAS  Google Scholar 

  48. Kattler H, Dijk DJ, Borbely AA. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res. 1994;3(3):159–64. https://doi.org/10.1111/j.1365-2869.1994.tb00123.x.

    Article  CAS  PubMed  Google Scholar 

  49. Krueger JM, Tononi G. Local use-dependent sleep; synthesis of the new paradigm. Curr Top Med Chem. 2011;11(19):2490–2. https://doi.org/10.2174/156802611797470330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Werth E, Achermann P, Borbely AA. Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport. 1996;8(1):123–7. https://doi.org/10.1097/00001756-199612200-00025.

    Article  CAS  PubMed  Google Scholar 

  51. Zavada A, Strijkstra AM, Boerema AS, Daan S, Beersma DG. Evidence for differential human slow-wave activity regulation across the brain. J Sleep Res. 2009;18(1):3–10. https://doi.org/10.1111/j.1365-2869.2008.00696.x.

    Article  PubMed  Google Scholar 

  52. Ferrara M, De Gennaro L. Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle. Curr Top Med Chem. 2011;11(19):2423–37. https://doi.org/10.2174/156802611797470268.

    Article  CAS  PubMed  Google Scholar 

  53. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81(1):12–34. https://doi.org/10.1016/j.neuron.2013.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frank MG. Circadian regulation of synaptic plasticity. Biology. 2016;5(3) https://doi.org/10.3390/biology5030031.

  55. Lazar AS, Lazar ZI, Dijk DJ. Circadian regulation of slow waves in human sleep: topographical aspects. Neuroimage. 2015;116:123–34. https://doi.org/10.1016/j.neuroimage.2015.05.012.

    Article  PubMed  Google Scholar 

  56. Franken P. A role for clock genes in sleep homeostasis. Curr Opin Neurobiol. 2013;23(5):864–72. https://doi.org/10.1016/j.conb.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  57. BaHammam AS, Gacuan DE, George S, Acosta KL, Pandi-Perumal SR, Gupta R. Polysomnography I: procedure and technology. In: Pandi-Perumal SR, editor. Synopsis of sleep medicine. Canada: Apple Academic Press; 2016. p. 443–56.

    Google Scholar 

  58. Almeneessier AS, Gupta R, Pandi-Perumal SR, BaHammam AS. Overview of sleep disorders. In: Murillo-Rodríguez E, editor. The behavioral, molecular, pharmacological, and clinical basis of the sleep-wake cycle. Cambridge: Academic; 2019. p. 103–22.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime M. Monti .

Editor information

Editors and Affiliations

Glossary

Circadian rhythm

is a rhythm with ~24 h periodicity in all living organisms that are synchronized to an environmental light/dark (LD) cycle.

EEG

(electroencephalogram).

EKG

(electrocardiogram).

EMG

(electromyogram) refers to recording muscle activity such as face twitches, teeth grinding, and leg movements; it also helps determine the presence of REM stage sleep.

EOG

(electrooculogram) refers to the recording of eye movement that is particularly important in determining the different stages of sleep, particularly REM stage sleep.

Hypnogram

is a visual depiction of overnight sleep, which shows the relationship between sleep stages.

MSLT

(Multiple Sleep Latency Test).

MWT

(Maintenance of Wakefulness Test).

PSG

(Polysomnography or sleep study) is an attended overnight recording of overnight sleep (usually six or more hours) by means of sleep stages and cycles on a sheet of paper or on a computer screen via electrophysiological signals based on electrode and sensor recording in humans. It is a diagnostic procedure during which several different physiological and pathophysiological (cardiac, arousal, movement, and respiratory events) parameters (such as EEG, EMG, EOG, SpO2, body position, blood pressure, penile tumescence, abnormal movement, and others) are continuously and simultaneously recorded across a sleep period to characterize sleep and identify sleep disorders. During overnight sleep, the following parameters are often recorded: Electroencephalogram (EEG); electromyogram (EMG; jaw, arm, and leg); electrooculogram (EOG); electrocardiogram (ECG); snoring; oro-nasal airflow (L/s) (liter/second) chest and abdomen movements (respiratory effort recordings); oxygen saturation (SpO2); body position; and real-time-video-image recordings (video polysomnography). In addition, depending on the requirements, other parameters such as nocturnal penile tumescence, gastroesophageal reflux, and BP are other electrophysiological signals that can be recorded.

SpO2

Pulse oximetry.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monti, J.M., BaHammam, A.S., Pandi-Perumal, S.R. (2022). Physiology of Normal Sleep. In: Gupta, R., Neubauer, D.N., Pandi-Perumal, S.R. (eds) Sleep and Neuropsychiatric Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-0123-1_1

Download citation

Publish with us

Policies and ethics