Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

In a fairly complex system like aircraft, modeling and parameter estimation plays a crucial role in determining its stability and control characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Bucharles, C. Cumer, G. Hardier, B. Jacquier, A. Janot, T.L. Moing, P. Vacher, An overview of relevant issues for aircraft model identification. J. Aerosp. lab. 4, 1–21 (2012)

    Google Scholar 

  • A. Calia, E. Denti, R. Galatolo, F. Schettini, Air data computation using neural networks. J. Aircraf. 45(6), 2078–2083 (2008)

    Google Scholar 

  • G. Chowdhary, R. Jategaonkar, Aerodynamic parameter estimation from flight data applying extended and unscented kalman filter. Aerosp. Sci. Technol. 106–117 (2010). https://doi.org/10.1016/j.ast.2009.10.003

  • T. Colin, I. Christina, T. Mark, F. Edmund, N. Randall, R. Heather, System Identification of Large Flexible Transport Aircraft. In Aiaa atmospheric flight mechanics conference and exhibit (American Institute of Aeronautics and Astronautics, 2008). https://doi.org/10.2514/6.2008-6894

  • S. Das, R.A. Kuttieri, M. Sinha, R. Jategaonkar, Neural partial differential method for extracting aerodynamic derivatives from flight data. J. Guid. Control Dyn. 33(2), 376–384 (2010). https://doi.org/10.2514/1.46053

  • A.M. Eugene, C. Kevin, A.H. Melissa, Global aerodynamic modeling for stall/upset recovery training using efficient piloted flight test techniques, in Aiaa Modeling and Simulation Technologies (mst) Conference (American Institute of Aeronautics and Astronautics, 2013). https://doi.org/10.2514/6.2013-4976

  • M. Eugene, Practical aspects of the equation-error method for aircraft parameter estimation, in Aiaa Atmospheric Flight Mechanics Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2006). https://doi.org/10.2514/6.2006-6144

  • E.J. Field, K.F. Rossitto, J. Hodgkinson, Flying qualities applications of frequency responses identified from flight data. J. Aircr. 41(1), 711–720 (2004)

    Google Scholar 

  • J. Fojdl, R.W. Brause, The performance of approximating ordinary differential equations by neural nets, in 20th IEEE International Conference on Tools with Artificial Intelligence, 2008. ICTAI ’08, vol. 2 (2008), pp. 457–464. https://doi.org/10.1109/ictai.2008.44

  • A.K. Ghosh, S.C. Raisinghani, S. Khubchandani, Estimation of aircraft lateral-directional parameters using neural networks. J. Aircr. 35, 876–881 (1998)

    Google Scholar 

  • J.A. Grauer, Real-time data-compatibility analysis using output-error parameter estimation. J. Aircr. 52(3), 940–947 (2015). https://doi.org/10.2514/1.C033182

  • R.A. Hess, On the use of backpropagation with feed forward neural networks for the aerodynamic estimation problem. AIAA 93–3639 (1993)

    Google Scholar 

  • K. Hornik, M. Stinchcombe, H. White, Multi layer feed forward neural networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Google Scholar 

  • K.W. Iliff, R.E. Maine, Uses of parameter estimation in flight test [Journal Article]. Journal of Aircraft 20(12), 1043–1049 (1983). https://doi.org/10.2514/3.48210

  • R. Jategaonkar, Flight vehicle system identification: a time domain methodology (American Institute of Aeronautics, 2006). Astronautics

    Google Scholar 

  • R. Jategaonkar, D. Fischenberg, W.V. Gruenhagen, Aerodynamic modeling and system identification from flight data-recent applications at dlr. J. Aircr. 41(1) (2004)

    Google Scholar 

  • R. Jategaonkar, E. Plaetschke, Algorithm for aircraft parameter estimation accounting for process and measurement noise. J. Aircr. 26(4), 360–372 (1989)

    Google Scholar 

  • Joao, O., Chu, Q. P., Mulder, J. A., Balini, H. M. N. K., & Vos, W. G. M. (2005). Output error method and two step method for aerodynamic model identification [Book Section]. In Aiaa guidance, navigation, and control conference and exhibit. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2005-6440

  • K, Y. (1977). Identification of aircraft stability and control derivatives in the presence of turbulence. In Guidance and control conference. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1977-1134

  • R.E. Kalman, A new approach to linear filtering and prediction problems [Journal Article]. Journal of Fluids Engineering 82(1), 35–45 (1960). https://doi.org/10.1115/1.3662552

  • Vladislav Klein, E.A. Moreli, Aircraft system identification theory and practice [Book] (AIAA, Education series, Reston, VA, 2006)

    Google Scholar 

  • V. Klein, J. Batterson, Aerodynamic parameters estimated from flight and wind tunnel data [Journal Article]. Journal of Aircraft 23(4), 306–312 (1985)

    Google Scholar 

  • Kumar, R. (2012). Lateral parameter estimation using ngn method [Journal Article]. International Journal of Engineering Inventions, 1(7), 82-89. 10 1 Aircraft system identification

    Google Scholar 

  • U. Kutluay, G. Mahmutyazicioglu, An application of equation error method to aerodynamic model identification and parameter estimation of a gliding flight vehicle [Conference Proceedings]. Aiaa atmospheric flight mechanics conference. AIAA 2009–5724 (2009)

    Google Scholar 

  • I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations [Journal Article]. IEEE Transactions on Neural Networks 9(5), 987–100 (1998)

    Google Scholar 

  • Li, C., Dou, X., & Wu, L. (2013). Research of the aerodynamic parameter estimation for the small unmanned aerial vehicle [Conference Proceedings]. In Control and automation (icca), 2013 10th ieee international conference on (p. 1917- 1920). https://doi.org/10.1109/ICCA.2013.6565091

  • D.J. Linse, R.F. Stengel, Idetification of aerodyanamics coffficient using computational neural network [Journal Article]. Journal of Guidance, Control, and Dynamics 16(6), 1018–1025 (1993)

    Google Scholar 

  • R.E. Maine, K.W. Iliff, Identification of dynamic system-application to aircraft, part i. Agard AG-300 (1986)

    Google Scholar 

  • M. Majeed, Aircraft System Identification and Control (LAP LAMBERT Academic Publishing, 2014a)

    Google Scholar 

  • M. Majeed, Parameter identification of flexible aircraft using frequency domain output error approach, in International Conference on Advances in Control and Optimization of Dynamical Systems (acods) (2014b)

    Google Scholar 

  • M. Majeed, S. Jatinder, Frequency and time domain recursive parameter estimation for a flexible aircraft, in 19th IFAC Symposium on Automatic Control in Aerospace (2013), pp. 443–448

    Google Scholar 

  • M. Majeed, I.N. Kar, Identification of aerodynamic derivatives of a flexible aircraft using output error method, in IEEE International Conference on Mechanical and Aerospace Engineering (cmae-2011) (2011), pp. 361–365

    Google Scholar 

  • M. Majeed, I.N. Kar, Aerodynamic parameter estimation using adaptive unscented kalman filter. Aircr. Eng. Aerosp. Technol. 85(4), 267–279 (2013). https://doi.org/10.1108/AEAT-Mar-2011-0038

  • R.K. Mehra, Maximum likelihood identification of aircraft parameters, in The Joint Automatic Control Conference (1970), pp. 442–444

    Google Scholar 

  • E. Morelli, Real time parameter estimation in the frequency domain. J. Guid. Control Dyn. 23(5), 812–818 (2000)

    Google Scholar 

  • J.A. Mulder, Design and evaluation of dynamic flight test maneuvers (Report No. Report LR-497). Delft University of Technology, Department of Aerospace Engineering (1986)

    Google Scholar 

  • A.A. Pashilkar, N. Sundararajan, P. Saratchandran, Adaptive backstepping neural controller for reconfigurable flight control systems. IEEE Trans. Control Syst. Technol. 14(3), 553–561 (2006). https://doi.org/10.1109/TCST.2005.863672

  • U.J. Pesonen, J.E. Steck, K. Rokhsaz, H.S. Bruner, N. Duerksen, Adaptive neural network inverse controller for general aviation safety. J. Guid. Control Dyn. 27(3), 434–443 (2004). https://doi.org/10.2514/1.1923

  • N.K. Peyada, A.K. Ghosh, Aircraft parameter estimation using neural network based algorithm. AIAA (2009), Accessed 10–13 August 2009

    Google Scholar 

  • S. Raisinghani, A. Ghosh, Frequency-domain estimation of parameters from flight data using neural networks. J. Guid. Control Dyn. 24(3), 525–530 (2001)

    Google Scholar 

  • S. Raisinghani, A. Ghosh, S. Khubchandani, Estimation of aircraft lateral-directional parameters using neural networks. J. Aircr. 35(6), 876–881 (1998)

    Google Scholar 

  • S.C. Raisinghani, A.K. Ghosh, Parameter estimation of an aeroelastic aircraft using neural networks. Sadhana 25(2), 181–191 (2000)

    Google Scholar 

  • S.C. Raisinghani, A.K. Ghosh, P.K. Kalra, Two new techniques for aircraft parameter estimation using neural networks. Aeronaut. J. 102, 25–29 (1998)

    Google Scholar 

  • T.J. Rohloff, S.A. Whitmore, I. Catton, Fault-tolerant neural network algorithm for flush air data sensing. J. Aircr. 36(3), 541–549 (1999). https://doi.org/10.2514/2.2489

  • M.K. Samal, S. Anavatti, M. Garratt, Neural network based system identification for autonomous flight of an eagle helicopter, in IFAC (2008). Accessed 6–11 July 2008

    Google Scholar 

  • M.K. Samal, A. Singhal, A.K. Ghosh, Estimation of equivalent aerodynamic parameters of an aeroelastic aircraft using neural network. IE(I) Journal-AS 90 (2009)

    Google Scholar 

  • Y. Shi, W. Qian, W. Yan, J. Li, Adaptive depth control for autonomous underwater vehicles based on feedforward neural networks. Int. J. Comput. Sci. Appl. 4(3), 107–118 (2007)

    Google Scholar 

  • S. Singh, A.K. Ghosh, Modified delta method for estimation of parameters from flight data of stable and unstable aircraft, in 2013 IEEE 3rd International Advance Computing Conference (IACC) (2013), pp. 775–781. https://doi.org/10.1109/IAdCC.2013.6514325

  • M. Sinha, R.A. Kuttieri, S. Chatterjee, Nonlinear and linear unstable aircraft parameter estimations using neural partial differentiation. J. Guid. Control Dyn. 36(4), 1162–1176 (2013). https://doi.org/10.2514/1.57029

  • S. Singh, A. Ghosh, Estimation of lateral-directional parameters using neural networks based modified delta method. Aeronaut. J. 111(3150), 659–667 (2007)

    Google Scholar 

  • D. Stepner, R. Mehra, Maximum likelihood identification and optimal input design for identifying aircraft stability and control derivatives (Report No. NASA CR-2200) (1973)

    Google Scholar 

  • L.W. Taylor, K.W. Iliff, B. Powers, A comparison of newton-raphson and other methods for determining stability derivatives from flight data. AIAA Paper 69-315. 12 1 Aircraft system identification (1969)

    Google Scholar 

  • K. Umit, M. Gokmen, P. Bulent, An application of equation error method to aerodynamic model identification and parameter estimation of a gliding flight vehicle [Book Section] (American Institute of Aeronautics and Astronautics, In Aiaa atmospheric flight mechanics conference, 2009). https://doi.org/10.2514/6.2009-5724

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majeed Mohamed .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, M., Dongare, V. (2021). Aircraft System Identification. In: Aircraft Aerodynamic Parameter Estimation from Flight Data Using Neural Partial Differentiation. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0104-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0104-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0103-3

  • Online ISBN: 978-981-16-0104-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics