Skip to main content

Inverse Diffraction Grating

  • Chapter
  • First Online:
Maxwell’s Equations in Periodic Structures

Part of the book series: Applied Mathematical Sciences ((AMS,volume 208))

  • 1304 Accesses

Abstract

In the previous chapters, we have studied the direct diffraction grating problems, which are to compute the wave fields for the given periodic structures and incident waves. This chapter concerns the inverse diffraction grating problems, which are to determine the profiles of the periodic structures from a knowledge of the wave fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Isakov, Inverse Source Problems (AMS, Providence, RI, 1989)

    MATH  Google Scholar 

  2. V. Isakov, Inverse Problems for Partial Differential Equations (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  3. H. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Kluwer Academic Publishers, Dordrecht, 1996)

    Book  MATH  Google Scholar 

  4. F. Natterer, The Mathematics of Computerized Tomography (Teubner, Stuttgart, 1986)

    Book  MATH  Google Scholar 

  5. F. Cakoni, D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction (Springer, Berlin, 2006)

    MATH  Google Scholar 

  6. X. Chen, Computational Methods for Electromagnetic Inverse Scattering (Wiley, Singapore, 2018)

    Book  Google Scholar 

  7. D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  8. A. Kirsch, N. Grinberg, The Factorization Method for Inverse Problems (Oxford University Press, New York, 2008)

    MATH  Google Scholar 

  9. G. Bao, An inverse diffraction problem in periodic structures, in Proceedings of Third International Conference on Mathematical and Numerical Aspects of Wave propagation, ed. by G. Cohen (SIAM, Philadelphia, 1995), pp. 694–704

    Google Scholar 

  10. F. Hettlich, A. Kirsch, Schiffer’s theorem in inverse scattering theory for periodic structures. Inverse Probl. 13, 351–361 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Elschner, G. Schmidt, M. Yamamoto, An inverse problem in periodic diffractive optics: global uniqueness with a single wavenumber. Inverse Probl. 19, 779–787 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Elschner, G. Schmidt, M. Yamamoto, Global uniqueness in determining rectangular periodic structures by scattering data with a single wave number. J. Inverse Ill-posed Probl. 11, 235–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Elschner, M. Yamamoto, Uniqueness in determining polygonal periodic structures. Zeits. Anal. Anwendungen 26, 165–177 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Bao, A uniqueness theorem for an inverse problem in periodic diffractive optics. Inverse Probl. 10, 335–340 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Bao, Z. Zhou, An inverse problem for scattering by a doubly periodic structure. Trans. Am. Math. Soc. 350, 4089–4103 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure. Inverse Probl. 11, 823–833 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Bao, H. Zhang, J. Zou, Unique determination of periodic polyhedral structures by scattered electromagnetic fields. Trans. Am. Math. Soc. 363, 4527–4551 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Bao, H. Zhang, J. Zou, Unique determination of periodic polyhedral structures by scattered electromagnetic fields II: the resonance case. Trans. Am. Math. Soc. 366, 1333–1361 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Bao, A. Friedman, Inverse problems for scattering by periodic structures. Arch. Ration. Mech. Anal. 132, 49–72 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Cheng, M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polyhedral obstacles with at most two incoming waves. Inverse Probl. 19, 1361–1384 (2003)

    Article  MATH  Google Scholar 

  21. J. Elschner, G. Hu, Global uniqueness in determining polygonal periodic structures with a minimal number of incident plane waves. Inverse Probl. 26, 115002 (2010)

    Google Scholar 

  22. A. Kirsch, Uniqueness theorems in inverse scattering theory for periodic structures. Inverse Probl. 10, 145–152 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Lechleiter, D.L. Nguyen, On uniqueness in electromagnetic scattering from biperiodic structures. ESAIM: Math. Model. Numer. Anal. 47, 1167–1184 (2013)

    Google Scholar 

  24. J. Yang, B. Zhang, Inverse electromagnetic scattering problems by a doubly periodic structure. Math. Appl. Anal. 18, 111–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Yang, B. Zhang, Uniqueness results in the inverse scattering problem for periodic structures. Math. Methods Appl. Sci. 35, 828–838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Kirsch, Diffraction by periodic structures, in Proceedings of Lapland Conferences Inverse Problems, ed. by L. Päivärinta, E. Somersalo (Springer, Berlin, 1993), pp. 87–102

    Google Scholar 

  27. F. John, Partial Differential Equations, 4th edn. (Springer, New York, 1982)

    Book  MATH  Google Scholar 

  28. D. Jerison, C. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121, 463–488 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.-C. Nédélec, F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s equations. SIAM J. Math. Anal. 22, 1679–1701 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Haddar, R. Kress, On the Fréchet derivative for obstacle scattering with an impedance boundary condition. SIAM J. Appl. Math. 65, 194–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Hettlich, Fréchet derivative in inverse obstacle scattering. Inverse Probl. 11, 371–382 (1995)

    Article  MATH  Google Scholar 

  32. J.-J. Liu, On uniqueness and linearization of an inverse electromagentic scattering problem. Appl. Math. Comput. 171, 406–419 (2005)

    MathSciNet  MATH  Google Scholar 

  33. P. Li, Y. Wang, Z. Wang, Y. Zhao, Inverse obstacle scattering for elastic waves. Inverse Probl.32, 115018 (2016)

    Google Scholar 

  34. A. Charalambopoulos, On the Fréchet differentiability of the boundary integral operators in the inverse elastic scattering problems. Inverse Probl. 11, 1137–1161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Le Louër, On the Fréchet derivative in elastic obstacle scattering. SIAM J. Appl. Math. 72, 1493–1507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Kirsch, The domain derivative and two applications in inverse scattering theory. Inverse Probl. 9, 81–96 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Potthast, Domain derivatives in electromagentic scattering. Math. Meth. Appl. Sci. 19, 1157–1175 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Li, An inverse cavity problem for Maxwell’s equations. J. Differ. Equs. 252, 3209–3225 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Bruckner, J. Cheng, M. Yamamoto, An inverse problem in diffractive optics: conditional stability. Inverse Probl. 18, 415–433 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Elschner, G. Schmidt, Inverse scattering for periodic structures: stability of polygonal interfaces. Inverse Probl. 17, 1817–1829 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Cagnol, M. Eller, Boundary regularity for Maxwell’s equations with application to shape optimization. J. Differ. Equs. 250, 1114–1136 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Delfour, J.-P. Zolésio, Oriented distance function and its evolution for initial sets within boundary. SIAM J. Control Optim. 42, 2286–2304 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. O. Pironneau, Optimal Shape Design for Elliptic Systems (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  44. R. Kress, W. Rundell, A quasi-Newton method in inverse obstacle scattering. Inverse Probl. 10, 1145–1157 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Kress, W. Rundell, Inverse obstacle scattering using reduced data. SIAM J. Appl. Math. 59, 442–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Hohage, Convergence rates of a regularized Newton method in sound-hard inverse scattering. SIAM J. Numer. Anal. 36, 125–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Hohage, On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Probl. 17, 1743–1763 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Kress, Newton’s method for inverse obstacle scattering meets the method of least squares. Inverse Probl. 19, S91–S104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Ammari, H. Kang, E. Kim, M. Lim, K. Louati, A direct algorithm for ultrasound imaging of internal corrosion. SIAM J. Numer. Anal. 49, 1177–1193 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Cheney, The linear sampling method and the MUSIC algorithm. Inverse Probl. 17, 591–595 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Devaney, Super-resolution processing of multi-static data using time reversal and MUSIC, unpublished (2000)

    Google Scholar 

  52. F. Gruber, E. Marengo, A. Devaney, Time-reversal imaging with multiple signal classification considering multiple scattering between the targets. J. Acoust. Soc. Am. 115, 3042–3047 (2004)

    Article  Google Scholar 

  53. C. Prada, J.-L. Thomas, Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix. J. Acoust. Soc. Am. 114, 235–243 (2003)

    Article  Google Scholar 

  54. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  55. D. Colton, A. Kirsch, A simple method for solving inverse scattering problems in the resonance region. Inverse Probl. 12, 383–393 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. F. Cakoni, D. Colton, The linear sampling method for cracks. Inverse Probl. 19, 279–295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. F. Cakoni, D. Colton, H. Haddar, The linear sampling method for anisotropic media. J. Comput. Appl. Math. 146, 285–299 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Charalambopoulos, D. Gintides, K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Probl. 18, 547–558 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Charalambopoulos, D. Gintides, K. Kiriaki, The linear sampling method for non-absorbing penetrable elastic bodies. Inverse Probl. 19, 549–561 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. F. Collino, M. Fares, H. Haddar, Numerical and analytical studies of the linear sampling method in electromagnetic inverse scattering problems. Inverse Probl. 19, 1279–1298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  61. D. Colton, H. Haddar, P. Monk, The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24, 719–731 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. D. Colton, H. Haddar, M. Piana, The linear sampling method in inverse electromagnetic scattering theory. Inverse Probl. 19, S105–S137 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. H. Haddar, P. Monk, The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Probl. 18, 891–906 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. S.N. Fata, B.B. Guzina, A linear sampling method for near field inverse problems in elastodynamics. Inverse Probl. 20, 713–736 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  65. T. Arens, Why linear sampling works. Inverse Probl. 20, 163–173 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  66. R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J. Comput. Appl. Math. 114, 247–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. R. Potthast, A new non-iterative singular sources method for the reconstruction of piecewise constant media. Numer. Math. 98, 703–730 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory (Chapman & Hall, Boca Raton, 2001)

    Book  MATH  Google Scholar 

  69. J. Cheng, J.-J. Liu, G. Nakamura, The numerical realization of the probe method for the inverse scattering problems from the near-field data. Inverse Probl. 21, 839–855 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  70. K. Erhard, R. Potthast, A numerical study of the probe method. SIAM J. Sci. Comput. 28, 1597–1612 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Ikehata, Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Probl. 14, 949–954 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  72. M. Ikehata, Reconstruction of obstacle from boundary measurements. Wave Motion 30, 205–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  73. M. Ikehata, Reconstruction of the shape of the inclusion by boundary measurements. Commun. Partial Differ. Equs. 23, 1459–1474 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  74. M. Ikehata, A new formulation of the probe method and related problems. Inverse Probl. 21, 413–426 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Probl. 18, 1025–1040 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  76. S. Hou, K. Solna, H. Zhao, A direct imaging algorithm for extended targets. Inverse Probl. 22, 1151–1178 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  77. S. Hou, K. Solna, H. Zhao, A direct imaging method using far-field data. Inverse Probl. 23, 1533–1546 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Hou, K. Huang, K. Solna, H. Zhao, A phase and space coherent direct imaging method. J. Acoust. Soc. Am. 125, 227–238 (2009)

    Article  Google Scholar 

  79. G. Bao, K. Huang, P. Li, H. Zhao, A direct imaging method for inverse scattering using the generalized Foldy-Lax formulation. Contemp. Math. 615, 49–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  80. J.B. Keller, Singularities and Rayleigh’s hypothesis for diffraction gratings. J. Opt. Soc. Am. 17, 456–457 (2000)

    Article  MathSciNet  Google Scholar 

  81. R. Miller, The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers. Radio Sci. 8, 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  82. N. García, M. Nieto-Vesperinas, Near-field optics inverse-scattering reconstruction of reflective surfaces. Opt. Lett. 18, 2090–2092 (1993)

    Article  Google Scholar 

  83. K. Ito, F. Reitich, A high-order perturbation approach to profile reconstruction: I perfectly conducting gratings. Inverse Probl. 15, 1067–1085 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  84. T. Arens, A. Kirsch, The factorization method in inverse scattering from periodic structures. Inverse Probl. 19, 1195–1211 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  85. A. Lechleiter, Imaging of periodic dielectrics. BIT Numer. Math. 50, 59–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. J. Yang, B. Zhang, R. Zhang, Reconstruction of penetrable grating profiles. Inverse Probl. Imaging 4, 1393–1407 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  87. F. Hettlich, Iterative regularization schemes in inverse scattering by periodic structures. Inverse Probl. 18, 701–714 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  88. G. Bruckner, J. Elschner, A two-step algorithm for the reconstruction of perfectly reflecting periodic profiles. Inverse Probl. 19, 315–329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  89. G. Hsiao, J. Elschner, A. Rathsfeld, Grating profile reconstruction based on finite elements and optimization techniques. SIAM J. Appl. Math. 64, 525–545 (2003)

    MathSciNet  MATH  Google Scholar 

  90. A. Malcolm, D.P. Nicholls, A boundary perturbation method for recovering interface shapes in layered media. Inverse Probl. 27, 095009 (2011)

    Google Scholar 

  91. A. Malcolm, D.P. Nicholls, Operator expansions and constrained quadratic optimization for interface reconstruction: impenetrable periodic acoustic media. Wave Motion 51, 23–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  92. R. Zhang, J. Sun, Efficient finite element method for grating profile reconstruction. J. Comput. Phys. 302, 405–419 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  93. G. Bao, P. Li, H. Wu, A computational inverse diffraction grating problem. J. Opt. Soc. Am. A 29, 394–399 (2012)

    Article  Google Scholar 

  94. G. Bao, P. Li, J. Lin, F. Triki, Inverse scattering problems with multi-frequencies. Inverse Probl. 31, 093001 (2015)

    Google Scholar 

  95. E.J. Candes, T. Strohmer, V. Voroninski, PhaseLift: Exact and stable signal recovery from magni tude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013)

    Article  MATH  Google Scholar 

  96. E.J. Candes, X. Li, M. Soltanolkotabi, Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61, 1985–2007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  97. S. Caorsi, A. Massa, M. Pastorino, A. Randazzo, Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm. IEEE Trans. Geosci. Remote. Sens. 41, 2745–2753 (2003)

    Article  Google Scholar 

  98. Z. Chen, G. Huang, A direct imaging method for electromagnetic scattering data without phase information. SIAM J. Imaging Sci. 9, 1273–1297 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  99. H. Dong, D. Zhang, Y. Guo, A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Probl. Imaging 13, 177–195 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  100. L. Li, H. Zheng, F. Li, Two-dimensional contrast source inversion method with phaseless data: TM case. IEEE Trans. Geosci. Remote. Sens. 47, 1719–1736 (2009)

    Article  Google Scholar 

  101. M.H. Maleki, A.J. Devaney, A. Schatzberg, Tomographic reconstruction from optical scattered intensities. J. Opt. Soc. Am. A 9, 1356–1363 (1992)

    Article  Google Scholar 

  102. L. Pan, Y. Zhong, X. Chen, S.P. Yeo, Subspace-based optimization method for inverse scattering problems utilizing phaseless data. IEEE Trans. Geosci. Remote. Sens. 49, 981–987 (2011)

    Article  Google Scholar 

  103. T. Takenaka, D. Wall, H. Harada, M. Tanaka, Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field. Microwave Opt. Tech. Lett. 14, 139–197 (1997)

    Article  Google Scholar 

  104. M.V. Klibanov, Phaseless inverse scattering problems in three dimensions. SIAM J. Appl. Math. 74, 392–410 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  105. M.V. Klibanov, A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Probl. Imaging 11, 263–276 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  106. M.V. Klibanov, V.G. Romanov, Reconstruction procedures for two inverse scattering problems without the phase information. SIAM J. Appl. Math. 76, 178–196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  107. B. Zhang, H. Zhang, Recovering scattering obstacles by multi-frequency phaseless far-field data. J. Comput. Phys. 345, 58–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  108. B. Zhang, H. Zhang, Imaging of locally rough surfaces from intensity-only far-field or near-field data. Inverse Probl. 33, 055001 (2017)

    Google Scholar 

  109. H. Dong, J. Lai, P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data. SIAM J. Imaging Sci. 12, 809–838 (2019)

    Article  MathSciNet  Google Scholar 

  110. O. Ivanyshyn, Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Probl. Imaging 1, 609–622 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  111. O. Ivanyshyn, R. Kress, Identification of sound-soft 3D obstacles from phaseless data. Inverse Probl. Imaging 4, 131–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  112. X. Ji, X. Liu, B. Zhang, Target reconstruction with a reference point scatterer using phaseless far field patterns. SIAM J. Imaging Sci. 12, 372–391 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  113. X. Ji, X. Liu, B. Zhang, Phaseless inverse source scattering problem: phase retrieval, uniqueness and sampling methods. J. Comput. Phys. X 1, 100003 (2019)

    Google Scholar 

  114. M.V. Klibanov, D. Nguyen, L. Nguyen, A coefficient inverse problem with a single measurement of phaseless scattering data. SIAM J. Appl. Math. 79, 1–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  115. K.-M. Lee, Shape reconstructions from phaseless data. Eng. Anal. Bound. Elem. 71, 174–178 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  116. J. Li, H. Liu, Y. Wang, Recovering an electromagnetic obstacle by a few phaseless backscattering measurements. Inverse Probl. 33, 035011 (2017)

    Google Scholar 

  117. D. Zhang, Y. Guo, Uniqueness results on phaseless inverse acoustic scattering with a reference ball. Inverse Probl. 34, 085002 (2018)

    Google Scholar 

  118. D. Zhang, Y. Guo, J. Li, H. Liu, Retrieval of acoustic sources from multi-frequency phaseless data. Inverse Probl. 34, 094001 (2018)

    Google Scholar 

  119. G. Bao, P. Li, J. Lv, Numerical solution of an inverse diffraction grating problem from phaseless data. J. Opt. Soc. Am. A 30, 293–299 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Bao .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao, G., Li, P. (2022). Inverse Diffraction Grating. In: Maxwell’s Equations in Periodic Structures. Applied Mathematical Sciences, vol 208. Springer, Singapore. https://doi.org/10.1007/978-981-16-0061-6_5

Download citation

Publish with us

Policies and ethics