Skip to main content

Variational Formulations

  • Chapter
  • First Online:
Maxwell’s Equations in Periodic Structures

Part of the book series: Applied Mathematical Sciences ((AMS,volume 208))

  • 1301 Accesses

Abstract

This chapter is devoted to the well-posedness of the grating problems which are presented in Chap. 2. The scattering problems in periodic structures have been studied extensively and a great number of mathematical results are available [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]. The general result may be stated as follows: the grating problem has a unique solution for all but possibly a countable sequence of frequencies. Unique solvability for all frequencies can be obtained for gratings, which either contain lossy media with nonzero conductivity or have perfectly electrically conducting surfaces with Lipschitz profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Abboud, Etude mathématique et numérique de quelques problémes de diffraction d’ondes électromagnétiques, Ph.D. thesis, Ecole Polytechnique, Palaiseau (1991)

    Google Scholar 

  2. T. Abboud, Electromagnetic waves in periodic media, in Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, ed. by R. Kleinman et. al. (SIAM, Philadelphia, 1993), pp. 1–9

    Google Scholar 

  3. H. Ammari, G. Bao, Analysis of the diffraction from periodic chiral structures. C. R. Acad. Sci. Paris Sér. I Math. 326, 1371–1376 (1998)

    Google Scholar 

  4. H. Ammari, G. Bao, Maxwell’s equations in periodic chiral structures. Math. Nachr. 251, 3–18 (2003)

    Article  MathSciNet  Google Scholar 

  5. H. Ammari, N. Béreux, J.-C. Nédélec, Resonant frequencies for a narrow strip grating. Math. Methods Appl. Sci. 22, 1121–1152 (1999)

    Article  MathSciNet  Google Scholar 

  6. H. Ammari, N. Béreux, J.-C. Nédélec, Resonances for Maxwell’s equations in a periodic structure. Japan J. Appl. Math. 17, 149–198 (2000)

    MathSciNet  MATH  Google Scholar 

  7. H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, H. Zhang, Mathematical and Computational Methods in Photonics and Phononics, Mathematical Surveys and Monographs, vol. 235 (American Mathematical Society, Providence, 2018)

    Book  Google Scholar 

  8. G. Bao, D. Dobson, On the scattering by a biperiodic structure. Proc. Am. Math. Soc. 128, 2715–2723 (2000)

    Article  MathSciNet  Google Scholar 

  9. G. Bao, D. Dobson, J.A. Cox, Mathematical studies in rigorous grating theory. J. Opt. Soc. Am. A 12, 1029–1042 (1995)

    Article  MathSciNet  Google Scholar 

  10. A. Bonnet-Bendhia, F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Meth. Appl. Sci. 17, 305–338 (1994)

    Article  Google Scholar 

  11. M. Cadilhac, Some mathematical aspects of the grating theory, in Electromagnetic Theory of Gratings, ed. by Petit (1980), pp. 53–62

    Google Scholar 

  12. X. Chen, A. Friedman, Maxwell’s equations in a periodic structure. Trans. Am. Math. Soc. 323, 465–507 (1991)

    MathSciNet  MATH  Google Scholar 

  13. D. Dobson, A variational method for electromagnetic diffraction in biperiodic structures. Modél. Math. Anal. Numér. 28, 419–439 (1994)

    Article  MathSciNet  Google Scholar 

  14. D. Dobson, A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure. J. Math. Anal. Appl. 166, 507–528 (1992)

    Article  MathSciNet  Google Scholar 

  15. T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73, 894–937 (1985)

    Article  Google Scholar 

  16. A. Kirsch, Diffraction by periodic structures, in Proceedings of Lapland Conferences Inverse Problems, ed. by L. Päivärinta, E. Somersalo (Springer, Berlin, 1993), pp. 87–102

    Google Scholar 

  17. L. Li, A model analysis of lamellar diffraction gratings in conical mountings. J. Mod. Opt. 40, 553–573 (1993)

    Article  Google Scholar 

  18. L. Li, Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction grating. J. Opt. Soc. Am. A 13, 1024–1035 (1996)

    Article  Google Scholar 

  19. E. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997)

    Google Scholar 

  20. G. Schmidt, On the diffraction by biperiodic anisotropic structures. Appl. Anal. 82, 75–92 (2010)

    Article  MathSciNet  Google Scholar 

  21. G. Schmidt, B.H. Kleemann, Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction. J. Mod. Opt. 58, 407–423 (2011)

    Article  Google Scholar 

  22. D. Colton, R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1983)

    MATH  Google Scholar 

  23. J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems (Springer, New York, 2000)

    MATH  Google Scholar 

  24. A. Kirsch, F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell’s Equations: Expansion-, Integral-, and Variational Methods (Springer International Publishing, Switzerland, 2015)

    Book  Google Scholar 

  25. R. Adams, Sobolev Spaces (Academic Press, New York, 1975)

    MATH  Google Scholar 

  26. K. Yosida, Functional Analysis, 6th edn. (Springer, New York, 1995)

    Book  Google Scholar 

  27. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, New York, 1983)

    MATH  Google Scholar 

  28. S.G. Mikhlin, Variational Methods in Mathematical Physics (Pergamon Press, Oxford, 1964)

    MATH  Google Scholar 

  29. R. Li, Galerkin Methods for Boundary Value Problems, Shanghai Scientific Publications Co., China (1988)

    Google Scholar 

  30. G. Bao, Finite element approximation of time harmonic waves in periodic structures. SIAM J. Numer. Anal. 32, 1155–1169 (1995)

    Article  MathSciNet  Google Scholar 

  31. D. Dobson, Optimal design of periodic antireflective structures for the Helmholtz equation. Euro. J. Appl. Math. 4, 321–339 (1993)

    Article  MathSciNet  Google Scholar 

  32. J. Elschner, M. Yamamoto, An inverse problem in periodic diffractive optics: reconstruction of Lipschitz grating profiles. Appl. Anal. 81, 1307–1328 (2002)

    Article  MathSciNet  Google Scholar 

  33. G. Bao, Numerical analysis of diffraction by periodic structures: TM polarization. Numer. Math. 75, 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  34. Ch. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2, 12–25 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Bao .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao, G., Li, P. (2022). Variational Formulations. In: Maxwell’s Equations in Periodic Structures. Applied Mathematical Sciences, vol 208. Springer, Singapore. https://doi.org/10.1007/978-981-16-0061-6_3

Download citation

Publish with us

Policies and ethics