Skip to main content

Plant–Soil–Microorganism Interaction Involved in Natural Suppression of Take-All Disease

  • Chapter
  • First Online:
Microbial Biotechnology in Crop Protection

Abstract

Take-all disease is the most important root disease in wheat caused by the fungus Gaeumannomyces graminis var. tritici. Considering economic importance of wheat, the disease is a serious problem worldwide. The effective and economically feasible control of the disease is a major problem around the globe. Strategies based on chemical control of take-all have been inefficient due to that the control of soil-borne pathogen is depending on the use of soil fumigants of broad-spectrum gaseous as methyl bromide, chloropicrin, metam sodium which are unacceptable in agriculture. The discovery of suppressive soils involving major plant–microbe interactions resulted in some significant advances, particularly in elucidating the role of the enzymes. These microbes through several mechanisms including the biocontrol, antibiosis, systemic resistance in plants (ISR) have made advanced progress in identifying major factors involved host range and pathogenicity determining as well as recognizing the mechanism that explains disease suppression. Moreover, the high-throughput sequencing techniques open new avenues for microbial control of plant disease considering, for example, the engineering plant microbiome to improve the plant health and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amir H, Alabouvette C (1993) Involvement of soil abiotic factors in the mechanisms of soil suppressiveness to fusarium wilts. Soil Biol Biochem 25:157–164

    Article  Google Scholar 

  • Andrade O, Campillo R, Peyrelongue A (2011) Soils suppressive against Gaeumannomyces graminis var. tritici identified under wheat crop monoculture in southern Chile. Cienc e Investig Agrar 38:345–356

    Article  Google Scholar 

  • Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol 38:1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Babu AG, Kim J-D, Oh B-T (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483. https://doi.org/10.1016/j.jhazmat.2013.02.014

    Article  PubMed  CAS  Google Scholar 

  • Bailey DJ, Paveley N, Pillinger C, Foulkes J, Spink J, Gilligan CA et al (2004) Epidemiology and chemical control of take-all on seminal and adventitious roots of wheat. Phytopathology 1:62–68

    Google Scholar 

  • Baker K, Cook RJ (1974) Biological control of plant pathogens. WH Freeman and Company, New York, NY, p 433

    Google Scholar 

  • Bakker PAHM, Doornbos RF, Zamioudis C, Berendsen RL, Pieterse CMJ (2013) Induced systemic resistance and the rhizosphere microbiome. Plant Pathol 29:136–143

    Article  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat TA, Gardener BBM, Coenen C (2008) 2,4-Diacetylphloroglucinol alters plant root development. Mol Plant Microbe Interact 21:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Castellanos-Morales V, Cárdenas-Navarro R, García-Garrido JM, Illana A, Ocampo JA, Steinkellner S et al (2012) Bioprotection against Gaeumannomyces graminis in barley—a comparison between arbuscular mycorrhizal fungi. Plant Soil Environ 58:256–261

    Article  Google Scholar 

  • Cha J, Han S, Hong H, Cho H, Kim D, Kwon Y et al (2016) Microbial and biochemical basis of a fusarium wilt-suppressive soil. ISME J 1:119–129

    Article  CAS  Google Scholar 

  • Chandrashekara C, Kumar R, Bhatt JC, Chandrashekara KN (2012) Suppressive soils in plant disease management. Eco-friendly Innov approaches plant. Dis Manag 13:241–256

    Google Scholar 

  • Chng S, Cromey MG, Dodd SL, Stewart A, Butler RC, Jaspers MV (2015) Take-all decline in New Zealand wheat soils and the microorganisms associated with the potential mechanisms of disease suppression. Plant and Soil 397:239–259

    Article  CAS  Google Scholar 

  • Cook RJ (2003) Take-all of wheat. Physiol Mol Plant Pathol 62:73–86

    Article  Google Scholar 

  • Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34:467–476

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang JT, Eisenhauer N et al (2020) The proportion of soil-borne pathogens increases with warming at the global scale. Nat Clim Chang 10:550–554

    Article  Google Scholar 

  • Dong M, Zhao M, Shen Z, Deng X, Ou Y, Tao C et al (2020) Biofertilizer application triggered microbial assembly in microaggregates associated with tomato bacterial wilt suppression. Biol Fertil Soils 56:551–563

    Article  CAS  Google Scholar 

  • Donovan NJA, Backhouse DB, Burgess LWC (2006) Enhanced suppression of Gaeumannomyces graminis var. tritici by retention of residues in a cereal cropping system. Aust Plant Pathol 1:43–48

    Article  Google Scholar 

  • Doughari J (2015) An overview of plant immunity. J Plant Pathol Microbiol 6:322

    Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Paredes C, Rengel Z et al (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils 50:983–990

    Article  CAS  Google Scholar 

  • Durán P, Jorquera M, Viscardi S, Carrion VJ (2017) Screening and characterization of potentially suppressive soils against Gaeumannomyces graminis under extensive wheat cropping by Chilean indigenous communities. Front Microbiol 8:1–16

    Article  Google Scholar 

  • Duran P, Viscardi S, Acuna J, Cornejo P, Azcon R, Mora ML (2018) Endophytic selenobacteria and arbuscular mycorrhizal fungus for selenium biofortification and Gaeumannomyces graminis biocontrol. J Soil Sci Plant Nutr 16:848–863

    Google Scholar 

  • El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75

    Google Scholar 

  • Fang S (2009) Microbial factors associated with the natural suppression of take-all in wheat in New Zealand

    Google Scholar 

  • Foo JL, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: current applications and its future. Biotechnol J 12:1–11

    Article  CAS  Google Scholar 

  • Freeman J, Ward E (2004) Gaeumannomyces graminis, the take-all fungus and its relatives. Mol Plant Pathol 5:235–252

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42(29):243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455

    Article  PubMed  CAS  Google Scholar 

  • Gardener BBM (2004) Ecology of bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 11:1252–1258

    Article  Google Scholar 

  • Ghini R, Morandi MB (2006) Biotic and abiotic factors associated with soil suppressiveness to Rhizodonia solani. Sci Agric 63:153–160

    Article  CAS  Google Scholar 

  • Gilligan CA, Brassett PR, Campbell A (1994) Modelling of early infection of cereal roots by the take-all fungus: a detailed mechanistic simulator. New Phytol 128(3):515–537. https://doi.org/10.1111/j.1469-8137.1994.tb02999.x

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer, Cham

    Book  Google Scholar 

  • González-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10:3400–3419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harkes P, van Steenbrugge JJM, van den Elsen SJJ, Suleiman AKA, de Haan JJ, Holterman MHM et al (2020) Shifts in the active Rhizobiome paralleling low Meloidogyne chitwoodi densities in fields under prolonged organic soil management. Front Plant Sci 10:1697

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornby D (1983) Suppressive soils. Annu Rev Phytopathol 21:65–85

    Article  Google Scholar 

  • Hornby D, Bateman GL, Gutteridge RJ, Lucas P, Osbourn AE, Ward E, Yarham DJ (1998) Take all disease of cereals: a regional perspective. CABI International, Wallingford, UK

    Book  Google Scholar 

  • Huang L, Ren Q, Sun Y, Ye L, Cao H, Ge F (2012) Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in to- mato. Plant Biol 14:905–913

    Article  PubMed  CAS  Google Scholar 

  • Jamali F, Sharifi-Tehrani A, Lutz MP, Maurhofer M (2009) Influence of host plant genotype, presence of a pathogen, and coinoculation with Pseudomonas fluorescens strains on the rhizosphere expression of hydrogen cyanide- and 2,4-diacetylphloroglucinol biosynthetic genes in P. fluorescens biocontrol strain CHA0. Microb Ecol 57:267–275

    Article  PubMed  Google Scholar 

  • Kerry BR, Crump DH, Mullen LA (1982) Natural control of the cereal cyst nematode, Heterodera avenae Woll., by soil fungi at three sites. Crop Prot 1(1):99–109. https://doi.org/10.1016/0261-2194(82)90061-8

    Article  Google Scholar 

  • Kwak YS, Weller DM (2013) Take-all of wheat and natural disease suppression: a review. Plant Pathol J 29:125–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwak Y-S, Bakker P a HM, Glandorf DCM, Rice JT, Paulitz TC, Weller DM (2009) Diversity, virulence, and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington state. Phytopathology 99(5):472–479. https://doi.org/10.1094/PHYTO-99-5-0472

    Article  PubMed  CAS  Google Scholar 

  • Kwak YS, Bonsall RF, Okubara PA, Paulitz TC, Thomashow LS, Weller DM (2012) Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biol Biochem 54:48–56

    Article  CAS  Google Scholar 

  • La Fuente LD, Thomashow L, Weller D, Bajsa N, Quagliotto L (2004) Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics and exerts a broad spectrum of biocontrol activity. Eur J Plant Pathol 110:671–681

    Article  Google Scholar 

  • Latz E, Eisenhauer N, Rall BC, Scheu S, Jousset A (2016) Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Sci Rep 6:23584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Xie G, Soad A, Coosemans J (2005) Suppression of Meloidogyne javanica by antagonistic and plant. J Zhejiang Univ Sci 6:496–501

    Article  CAS  Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z et al (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis. Biol Control 3:277–285

    Article  Google Scholar 

  • Löbmann MT, Vetukuri RR, de Zinger L, Alsanius BW, Grenville-Briggs LJ, Walter AJ (2016) The occurrence of pathogen suppressive soils in Sweden in relation to soil biota, soil properties, and farming practices. Appl Soil Ecol 107:57–65

    Article  Google Scholar 

  • Mavrodi OV, Mavrod DV, Thomashow LS, Weller DM (2007) Quantification of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the plant rhizosphere. Appl Environ Microbiol 73:5531–5538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81:557–564

    Article  PubMed  CAS  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M, Schneider JHM et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Normander BO, Hendriksen NB, Nybroe OLE (1999) Green fluorescent protein-marked pseudomonas fluorescens: localization viability, and activity in the natural barley rhizosphere. 65(10):4646–4651

    Google Scholar 

  • Osbourn AE, Clarke BR, Lunness P, Scott PR, Daniels MJ (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol Mol Plant Pathol 45:457–467

    Article  CAS  Google Scholar 

  • Pathak KV, Keharia H (2013) Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). J Appl Microbiol 114:1300–1310

    Article  PubMed  CAS  Google Scholar 

  • Paulitz TC, Smiley RW, Cook RJ (2002) Insights into the prevalence and management of soilborne cereal pathogens under direct seeding in the Pacific northwest, U.S.A. Can J Plant Pathol 24:416–428

    Article  Google Scholar 

  • Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  PubMed  CAS  Google Scholar 

  • Pinto ZV, Morandi MAB, Bettiol W (2013) Induction of suppressiveness to Fusarium wilt of chrysanthemum with composted sewage sludge. Trop Plant Pathol 38(5):414–422. https://doi.org/10.1590/S1982-56762013005000026

    Article  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 5:2261–2268

    Article  CAS  Google Scholar 

  • Roget DK, Rovira AD (1991) The relationship between incidence of infection by take-all fungus (Gaeumannomyces graminis var. tritici), rainfall and yield of wheat in South Australia. Aust J Exp Agric 31:509–513

    Article  Google Scholar 

  • Rodriguez R, Durán P (2020) Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects. Front Bioeng Biotechnol 8:1–14. https://doi.org/10.3389/fbioe.2020.00568

    Article  Google Scholar 

  • Sarniguet A, Lucas P, Lucas M (1992) Relationships between take-all, soil conduciveness to the disease, populations of fluorescent pseudomonads and nitrogen fertilizers. Plant and Soil 145:17–27

    Article  Google Scholar 

  • Sheth RU, Cabral V, Chen SP, Wang HH (2016) Manipulating bacterial communities by in situ microbiome engineering. Trends Genet 32:189–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fertil Soils 36:260–268

    Article  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products 67(4):491–502. https://doi.org/10.1128/MMBR.67.4.491

    Article  CAS  Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999). Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. pp 360–369

    Google Scholar 

  • Surico G (2013) The concepts of plant pathogenicity, virulence/avirulence and effector proteins by a teacher of plant pathology. Phytopathol Mediterr 52:399–417

    Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Trivedi C, Hamonts K, Anderson IC, Singh BK (2017) Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol Biochem 111:10–14

    Article  CAS  Google Scholar 

  • Troppens DM, Dmitriev RI, Papkovsky DB, O’Gara F, Morrissey JP (2013) Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 13:322–334

    Article  PubMed  CAS  Google Scholar 

  • Validov S, Mavrodi O, De La Fuente L, Boronin A, Weller D, Thomashow L, Mavrodi D (2005) Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. FEMS Microbiol Lett 242(2):249–256. https://doi.org/10.1016/j.femsle.2004.11.013

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones TH, Ritz K, Six J, Strong DR, van der Putten WH (2012) Soil ecology and ecosystem services. In: Wall the Netherlands, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256. https://doi.org/10.1094/phyto-97-2-0250

    Article  PubMed  Google Scholar 

  • Weller DM (2015) Take-all decline and beneficial pseudomonads. Princ Plant-Microbe Interact Microbes Sustain Agric 29:1–448

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Weller DM et al (2012) Induced systemic resistance in Arabi- dopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluores- cens. Phytopathology 102:403–412

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134

    Article  Google Scholar 

  • Yang M, Wen S, Mavrodi DV, Mavrodi OV, Von WD, Thomashow LS et al (2014) Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathology 104:248–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein tran- scription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci U S A 96:6523–6528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to FONDECYT-regular projects 1201196 and 1181050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durán, P., de la Luz Mora, M. (2021). Plant–Soil–Microorganism Interaction Involved in Natural Suppression of Take-All Disease. In: Kaushal, M., Prasad, R. (eds) Microbial Biotechnology in Crop Protection. Springer, Singapore. https://doi.org/10.1007/978-981-16-0049-4_7

Download citation

Publish with us

Policies and ethics