Skip to main content

A Glimpse of Tuber Crop, Their Diseases and Control Mechanisms

  • Chapter
  • First Online:
Microbial Biotechnology in Crop Protection
  • 1011 Accesses

Abstract

Edible tubers are a popular food source due to their vital nutrient and high starch content. These crops are filled with proteins, dietary fiber, minerals such as calcium and potassium, and a certain amount of vitamins like thiamin, vitamin B, and riboflavin, thereby making them a good nutrient source. Most widely used tuber varieties are potato (Solanum tuberosum), sweet potato (Ipomoea batatas), taro (Colocasia esculenta), arrowroot (Maranta arundinacea), Indian shot (Canna indica), yam (Dioscorea alata), crosne (Stachys affinis), artichoke (Cynara cardunculus), cassava (Manihot esculenta), jicama (Pachyrhizus erosus). These tuber crops are susceptible to attack by soilborne pathogens that can significantly reduce the yield and quality in the tuber crops. The pathogens that are specific to tubers can survive in soil years after years, affecting the crops consecutively season after season. Major soilborne pathogen groups are fungi, bacteria, viruses, and nematodes. The most familiar diseases caused by soilborne pathogens are rots that affect belowground tissues such as Fusarium dry rot caused by Fusarium sambucinum and pink rot caused by Phytophthora erythroseptica. However, they are also responsible for causing aboveground diseases such as Verticillium wilt caused by Verticillium dahliae and charcoal rot caused by Macrophomina phaseoli. A thorough knowledge of the soilborne diseases is very imperative in order to diagnose and manage the soilborne diseases of tubers. The control for soilborne diseases in tubers can be physical, cultural, chemical as well as biological. This chapter will discuss the major soilborne pathogens responsible for attacking tubers, their management and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alison GR (2014) Plant viruses: soil-borne. Wiley, London

    Google Scholar 

  • Antonious GF (2003) Impact of soil management and two botanical insecticides on urease and invertase activity. J Environ Sci Health 38(4):479–488

    Article  CAS  Google Scholar 

  • Arora RK, Khurana SMP (2004) Major fungal and bacterial diseases of potato and their management. In: Mukerji KG (ed) Fruit and vegetable diseases disease management of fruits and vegetables, vol 1. Springer, Dordrecht. https://doi.org/10.1007/0-306-48575-3_6

    Chapter  Google Scholar 

  • Arunachalam P, Sasikumar, Seung Y, Cheng J, Meng L, Suh JW (2011) Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces spMJM5763. J Appl Microbiol 111:443–455

    Article  Google Scholar 

  • Asha MB, Lawrence ED, Simonne EH (2018) Fungicidal activity and nutritional value of phosphorous acid. In: Pscheidt JW, Ocamb CM (eds) Pacific northwest plant disease management handbook. Oregon State University, Corvallis

    Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soilborne diseases with residue management and organic amendments. Soil Tillage Res 72(2):169–180

    Article  Google Scholar 

  • Benigni M, Bompeix G (2010) Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture. Pest Manag Sci 66(12):1332–1336

    Article  PubMed  CAS  Google Scholar 

  • Bentley A, Berna T, Julie N, Burges LW, Summerell B (2006) A survey of fusarium species associated with wheat and grass stem bases in northern Turkey. Sydowia 58:163–177

    Google Scholar 

  • Bhattacharjee R, Dey U (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. Afr J Microbiol Res 8(17):1749–1762

    Article  Google Scholar 

  • Bignell DRD, Fyans JK, Cheng Z (2013) Phytotoxins produced by plant pathogenic Streptomyces species. J Appl Microbiol 116(2):223–235

    Article  PubMed  CAS  Google Scholar 

  • Brewer MT, Larkin RP (2005) Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot 24(11):939–950

    Article  Google Scholar 

  • Bridge J (1982) Nematodes of yams. In: Mi J, Lyonga SN (eds) Yams: ignames. Oxford University Press, Oxford, pp 253–264

    Google Scholar 

  • Brooks FE (2008) Detached-leaf bioassay for evaluating taro resistance to Phytophthora colocasiae. Plant Dis 92:126–131

    Article  PubMed  CAS  Google Scholar 

  • Colla P, Gilardi G, Gullino ML (2012) A review and critical analysis of the European situation of soilborne disease management in the vegetable sector. Phytoparasitica 40:515–523

    Article  Google Scholar 

  • Conn KL, Lazarovits G (1999) Impact of animal manures on verticillium wilt, potato scab, and soil microbial populations. Can J Plant Pathol 21(1):81–92

    Article  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31(1):53–80

    Article  PubMed  CAS  Google Scholar 

  • Corato UD (2020) Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: a critical review. Rhizosphere 13:100192

    Article  Google Scholar 

  • Davis G, Das P (1998) Effect of different organic amendments for the management of root-knot nematode, Meloidogyne Incognita on carrot. Indian J Nematol 28(2):203–207

    Google Scholar 

  • Davis JR, Garner JG, Callihan RH (1974) Effects of gypsum, sulfur, terraclor and terraclor super-x for potato scab control. American Potato J 51(2):35–43

    Article  CAS  Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and fusarium crown and root rot of asparagus in replant soils. Plant Dis 95(8):960–966

    Article  PubMed  Google Scholar 

  • Everts KL, Egel DS, Langston D, Zhou XG (2014) Chemical management of Fusarium wilt of watermelon. Crop Prot 66:114–119

    Article  CAS  Google Scholar 

  • Falloon RE, Merz U, Butler RC, Curtin D, Lister RA, Thomas SM (2016) Root infection of potato by Spongospora subterranea: knowledge review and evidence for decreased plant productivity. Plant Pathol 65:422–434

    Article  Google Scholar 

  • Fiers M, Edel-Hermann V, Chatot C (2014) Potato soil-borne diseases. A review. Agron Sustain Dev 32:93. https://doi.org/10.1007/s13593-011-0035-z

    Article  Google Scholar 

  • George N (2005) Control of plant diseases. In: Agrios GN (ed) Plant pathology, 5th edn. Academic Press, Amsterdam, pp 293–353

    Google Scholar 

  • Gonzalez TR, Meléro V, Gómez-Vázquez, Díaz R (1993) The effects of soil solarization and soil fumigation on fusarium wilt of watermelon grown in plastic house in South-Eastern Spain. Plant Pathol 42:858–864

    Article  Google Scholar 

  • Göre ME (2017) Fungal seedborne pathogens infecting potato seed tubers from Turkey, 2011–2014. J Plant Dis Prot 124:539–551. https://doi.org/10.1007/s41348-017-0091-y

    Article  Google Scholar 

  • Gottstein H, Kuc J (1989) The induction of systemic resistance to anthracnose in cucumber plants by anthracnose. Phytopathology 79:271–275

    Article  Google Scholar 

  • Gudmestad NC, BRJ T, Pasche JS (2007) Management of soilborne diseases of potato. Australasian Plant Pathol 36:109–115

    Article  Google Scholar 

  • Gulya TJ, Urs R, Banttari E (1982) Apical chlorosis of sunflower caused by Pseudomonas syringae pv. Tagetis. Plant Dis 66:598–600

    Article  Google Scholar 

  • Gutiérrez DL, Fuentes S, Salazar LF (2007) Sweet potato virus disease (SPVD): distribution, incidence, and effect on sweet potato yield in Peru. APS Publ 87(3):297–302

    Google Scholar 

  • Harrington TC, Thorpe DJ, Alfenas AC (2011) Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata. Phytopathology 101:555–566

    Article  PubMed  Google Scholar 

  • Huber DM (1990) Fertilizers and soil-borne diseases. Soil Use Manage 6(4):4168–4172

    Article  Google Scholar 

  • Inserra R, Chitambar J, David C and Zafar H (2004) The potato pathotype of the false-root knot nematode, Nacobbus aberrans. Working group of the SON exotic nematode plant pest list

    Google Scholar 

  • Jaacov K (2000) Physical and cultural methods for the management of soil-borne pathogens. Crop Prot 19(8):725–731

    Google Scholar 

  • Jackson GVH, Gerlach WWP (1985) Pythium rots of taro. South Pacific Commission, Pest advisory leaflet no. 20, Noumea, New Caledonia

    Google Scholar 

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem 69:110–118

    Article  CAS  Google Scholar 

  • Jeger MJ, Hide GA, Boogert VD, Termorshuizen AJ, Baarlen V (1996) Pathology and control of soil-borne fungal pathogens of potato. Potato Res 39(3):437–469

    Article  Google Scholar 

  • Jobling J (2000) Essential oils: a new idea for postharvest disease control. Good Fruit Vegetables Mag 11(3):50–54

    Google Scholar 

  • Johnston HW, Celetti MJ, Kimpinski J, Platt H (1994) Fungal pathogens and Pratylenchus penetrans associated with preceding crops of clovers, winter wheat, and annual ryegrass and their influence on succeeding potato crops on Prince Edward Island. American Potato J 71(12):797–808

    Article  Google Scholar 

  • Kadoglidou K, Lagopodi A, Karamanoli K, Vokou D, Bardas GA, Menexes G, Constantinidou HIA (2011) Inhibitory and stimulatory effects of essential oils and individual monoterpenoids on growth and sporulation of four soil-borne fungal isolates of Aspergillus terreus, Fusarium oxysporum, Penicillium expansum, and Verticillium dahliae. Eur J Plant Pathol 130:297–309

    Article  CAS  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10(10):813–829

    Article  PubMed  CAS  Google Scholar 

  • Kendig SR (2000) Effect of irrigation and soil water stress on densities of Macrophomina phaseolina in soil and roots of two soybean cultivars. Plant Dis 84(8):895–900

    Article  PubMed  CAS  Google Scholar 

  • Koike S (2003) Vegetable diseases caused by soilborne pathogens. University of California, Berkeley

    Book  Google Scholar 

  • Kreuze JF, Souza-Dias JAC, Jeevalatha A, Figueira AR, Valkonen JPT, Jones RAC (2020) Viral diseases in potato. In: Campos H, Ortiz O (eds) The potato crop. Springer, Cham. https://doi.org/10.1007/978-3-030-28683-5_11

    Chapter  Google Scholar 

  • Kumar R, Jeevalatha A (2014) Viral diseases and their management in potato production in book: summer school on current trends in quality potato production, processing and marketing. CPRI, Shimla, pp 115–127

    Google Scholar 

  • Kumar R, Sharma J (2005) Effect of soil solarization on true potato (Solanum tuberosum L.) seed germination, seedling growth, weed population and tuber yield. Potato Res 48:15–23

    Article  Google Scholar 

  • Labrada R (2008) Non-chemical alternatives to methyl bromide for soil-borne pest control. In: Workshop on non-chemical alternatives to replace methyl bromide as a soil fumigant—report, Budapest

    Google Scholar 

  • Lambert K, Bekal S (2002) Introduction to plant-parasitic nematodes. Plant Health Inst. https://doi.org/10.1094/PHI-I-2002-1218-01

  • Larkin Robert P, Griffin TS, Honeycutt W (2010) Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis 94(12):1491–1502

    Article  PubMed  CAS  Google Scholar 

  • Larkin RP, Honeycutt CW, Olanya OM, Halloran JM, He Z (2012) Impacts of crop rotation and irrigation on soilborne diseases and soil microbial communities. In: Sustainable potato production: global case studies. Springer, Dordrecht, pp 23–41

    Chapter  Google Scholar 

  • Liloqula J, Saelea H, Levela (1993) Traditional taro cultivation in the Solomon Islands. In: Ferentinos L (ed) Proceedings of the sustainable taro culture for the Pacific conference. University of Hawaii, Honolulu, pp 125–131

    Google Scholar 

  • Maiti S, Chandra S, Sahambi HS (1980) A new leaf blight (identified as Rhizoctonia solani) of arrowroot (Maranta arundinacea) and turmeric (Curcuma longa) in Meghalaya. Indian Phytopathol 33:492–493

    Google Scholar 

  • McCarter SM, Kays SJ (1984) Diseases limiting production of Jerusalem artichokes in Georgia. Plant Dis 68:299–302

    Article  Google Scholar 

  • Moeinzadeh A, Sharif-Zadeh F, Ahmadzadeh M, Tajabadi FH (2010) Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust J Crop Sci 4(7):564–570

    Google Scholar 

  • Mohamed NA, Mantel L (1976) Incidence of virus symptoms in yam (Dioscorea sp.) foliage in the commonwealth Caribbean. Tropical Agric Trinidad 53:255–261

    Google Scholar 

  • Mordue JEM, Holliday P (1976) Sclerotinia sclerotiorum. CMI Descrip Pathogenic Fungi Bacteria 52:511–520

    Google Scholar 

  • Mukry SN, Ahmad A, Khan SA (2010) Screening and partial characterization of hemolysins from Bacillus sp. strain S128 and S144 are hemolysin B (HBL) producers. Pak J Bot 42(1):463–472

    CAS  Google Scholar 

  • Neshev NG (2008) Major soil-borne phytopathogens on tomato and cucumber in Bulgaria, and methods for their management. In: Labrada R (ed) Alternatives to replace methyl bromide for soil-borne pest control in east and central Europe. FAO UNEP, Rome, pp 1–14

    Google Scholar 

  • Oerke EC, Dehne HW, Schonbeck F, Weber A (1994) Crop production and crop protection estimated in major foods and cash crops. Elsevier, Amsterdam, pp 450–535

    Google Scholar 

  • Ooka JJ (1994) Taro diseases: a guide for field identification. In: Pest management guidelines. Research extension series. University of Hawaii, Honolulu

    Google Scholar 

  • Panth M, Hassler SC, Gurel F (2020) Methods for management of soilborne diseases in crop production—a review. Agri 10(16):20–21

    Google Scholar 

  • Paret ML, Cabos R, Kratky BA, Alvarez AM (2010) Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis 94(5):521–527

    Article  PubMed  Google Scholar 

  • Punja ZK, Grogan RG (1982) Effects on inorganic salts, carbonate – bicarbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotium rolfsii. Phytopathology 72:635–639

    Article  CAS  Google Scholar 

  • Reddy PP (2015) Plant protection in tropical root and tuber crops. Springer, New Delhi, p 331

    Book  Google Scholar 

  • Rekanović E, Potočnik I, Milijašević-Marčić S, Stepanović M, Todorović B, Mihajlović M (2011) Sensitivity of Phytophthora infestans (Mont.) de Bary isolates to Fluazinam, Fosetyl-Al and Propamocarb-hydrochloride. J Environ Sci Health 47(5):403–409

    Article  CAS  Google Scholar 

  • Rosskopf E, Gioia FD, Hong JC, Pisani C, Kokalis-Burelle N (2020) Organic amendments for pathogen and nematode control. Annu Rev Phytopathol 58:277–311

    Article  PubMed  CAS  Google Scholar 

  • Sibel D, Soner S, Cigdem US (2014) Corm and root rot of Colocasia esculenta caused by Ovatisporangium vexans and Rhizoctonia solani. Romanian Biotechnol Lett 19(6):9868–9874

    Google Scholar 

  • Singh RS (2001) Disease management—the practices. In: Introduction to principles of plant pathology. Oxford and IBH Publishing, New Delhi, p 310

    Google Scholar 

  • Singleton LL, Mihail JD, Rush CM (1992) Methods for research on soil-borne phytopathogenic fungi. American Phytopathological Society Press, St Paul, p 264

    Google Scholar 

  • Steinsbauer CE, Kushman LJ (1971) Sweet potato culture and diseases. In: Agriculture handbook. United States Department of Agriculture, Washington, DC, p 74

    Google Scholar 

  • Stephens CT, Stebbins TC (1985) Control of damping off pathogens in soilless container media. Plant Dis 69(6):494–496

    Google Scholar 

  • Sundravadana S, Alice D, Kuttalam S, Samiyappan R (2007) Azoxystrobin activity on Rhizoctonia solani and its efficacy against rice sheath blight. Tunis J Plant Prot 2(2):79

    Google Scholar 

  • Tanović B, Gašić S, Hrustić J, Mihajlović M, Stevanović M, Grahovac M, Goran D, Stevanović M (2013) Development of a thyme essential oil formulation and its effect on Monilinia fructigena. Pesticides Phytomed 28(4):273–280

    Article  CAS  Google Scholar 

  • Terry ER (1982) Sweet potato (Ipomoea batatas) virus diseases and their control. In: Sweet potato: proceedings of the 1st international symposium, Taiwan, Villareal RL, Griggs TD, eds, pp 161–168

    Google Scholar 

  • Thompson AK, Been BO, Perkins C (1977) Fungicidal treatments of stored yams. Tropical Agric Trinidad 54:179–183

    CAS  Google Scholar 

  • Turkolmez S, Soylu EM (2014) Antifungal efficacies of plant essential oils and main constituents against soilborne fungal disease agents of bean. J Essential Oil Bearing Plants 17(2):203–211

    Article  CAS  Google Scholar 

  • Twumasi GO-M, Moses E (2014) The rot fungus Botryodiplodia theobromae strains cross infect cocoa, mango, banana and yam with significant tissue damage and economic losses. Afr J Agric Res 9(6):613–619

    Article  Google Scholar 

  • Utkhede RS, Guptha VK (1996) Management of soil borne diseases. Kalyani Publishers, New Delhi, p 354

    Google Scholar 

  • Vatchev T, Maneva S (2012) Chemical control of root rot complex and stem rot of greenhouse cucumber in straw-bale culture. Crop Prot 42:16–23

    Article  CAS  Google Scholar 

  • Veena DR, Priya HR, Raheesa MK, Divya J (2014) Soilborne diseases in crop plants and their management. J Agric Allied Sci 3(2):12–18

    Google Scholar 

  • Vijvera RVD, Mertensa K, Heungens K, Somers B, Nuyttens D, Borra-Serrano I, Lootens P, Roldán-Ruiz I, Vangeytea J, Saeys W (2020) In-field detection of Alternaria solani in potato crops using hyperspectral imaging. Comput Electron Agric 168:1–11

    Google Scholar 

  • Wang MC, Gong M, Zang HB, Hua XM, Yao J, Pang JY, Yang YH (2006) Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. J Environ Sci Health 41(4):399–413

    Article  CAS  Google Scholar 

  • Wharton PS, Tumbalam P, Kirk WW (2006) First report of potato tuber sprout rot caused by Fusarium sambucinum in Michigan. Plant Dis 90:1460–11464

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (1987) Effect of media on growth and interactions between a range of soilborne glasshouse pathogens and antagonistic fungi. New Phytol 107:127–142

    Article  Google Scholar 

  • Wiggins BE, Kinkel LL (2005) Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous Streptomycetes. Phytopathology 95(2):178–185

    Article  PubMed  CAS  Google Scholar 

  • Yulianti T, Sivasithamparam K, Turner DW (2006) Saprophytic growth of Rhizoctonia solani Kuhn AG2-1 (ZG5) in soil amended with fresh green manures affects the severity of damping-off in canola. Soil Biol Biochem 38(5):923–930

    Article  CAS  Google Scholar 

  • Zimmer DE, Rehder D (1976) Rust resistance of wild Helianthus species of the north central United States. Phytopathology 66:208–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, D., Shyam, V. (2021). A Glimpse of Tuber Crop, Their Diseases and Control Mechanisms. In: Kaushal, M., Prasad, R. (eds) Microbial Biotechnology in Crop Protection. Springer, Singapore. https://doi.org/10.1007/978-981-16-0049-4_10

Download citation

Publish with us

Policies and ethics