Skip to main content

A Review on Properties and Applications of Xanthan Gum

  • Chapter
  • First Online:
Microbial Polymers

Abstract

Xanthan gum is a hetero-polysaccharide formed by the strains of Xanthomonas spp. It is a naturally found polysaccharide molecule of high molecular weight maily formed by various fermentation processes. Its extraordinary rheological properties make it a very useful stabilizing agent for water-based systems. It has enormous applications ranging from the food industry to oil drilling. It is typically used in food industry in salad coverings, sauces, milk products, gravies, sweets, and low calorie foods in general. Xanthan gum is also used in making cleansers, varnishes, polishes, and in agricultural flowables. This chapter describes the extraction procedure of xanthan gum from microbes, factors affecting production, and application in different sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed NH, Soda ME, Hassan AN, Frank JF (2005) Improving the textural properties of an acid-coagulated (Karish) cheese using exopolysaccharide producing cultures. LWT-Food Sci Technol 38:843–847

    Article  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:1–9

    Google Scholar 

  • Amnuaikit T, Boonme P (2013) Formulation and characterization of sunscreen creams with synergistic efficacy on SPF by combination of UV filters. J Appl Pharm Sci 3(8):1–9

    Google Scholar 

  • Ashutosh L, Suman R, Sidhyartha S, Altaf S, Vandana YM (2012) Review article a novel drug delivery system: niosomes review. J Drug Deliv Ther 2:129–135

    Google Scholar 

  • Bellini MZ, Caliari C (2014) Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. J Biomater Appl 29:1155–1166. https://doi.org/10.1177/0885328214553959

    Article  Google Scholar 

  • Bhattacharya SS, Mazahir F, Banerjee S, Verma A, Ghosh A (2013) Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohydr Polym 98:64–72

    Article  Google Scholar 

  • Bindu S, Ashok V (2012) As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci 1(2):642–661

    Google Scholar 

  • Butani SB (2013) Development and optimization of venlafaxine hydrochloride sustained release triple layer tablets adopting quality by design approach. Pharmacol Pharm 4:9–16. https://doi.org/10.4236/pp.2013.43A002

    Article  Google Scholar 

  • Bylaite E, Adler-Nissen J, Meyer AS (2005) Effect of xanthan on flavor release from thickened viscous food model systems. J Agric Food Chem 53:3577–3583

    Article  Google Scholar 

  • Cao H, Martino G, Richardson P, Inventors; National Starch, Chemical Investment Holding Corp, Assignee (2003) Use of xanthan gum as a hair fixative [United States patent application US 09/932,435]

    Google Scholar 

  • Cao H, Li A, Yang Z, Zhu Y (2019) Application of xanthan gum as a pre-treatment and sharpness evaluation for inkjet printing on polyester. Polymers 11:1504

    Article  Google Scholar 

  • Collin N, Bichon Y, Pays K, Inventors; L’Oreal SA; Assignee. Eyeshadow comprising a xanthan gum and a mixed silicate; August 21, 2003 [United States patent application US 10/337,904]

    Google Scholar 

  • De Vuyst L, Vermiere A, Van Loo J, Vandamme EJ (1987) Two-step fermentation process for improved xanthan production by Xanthomonas campestris NRRL B-1459. J Chem Technol Biotechnol 39:263–273

    Article  Google Scholar 

  • Deshmukh VN, Jadhav JK, Masirkar VJ, Sakarkar DM (2009) Formulation optimization and evaluation of controlled release alginate microspheres using synergy gum blends. Res J Pharm Tec 2:324–327

    Google Scholar 

  • Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72

    Article  Google Scholar 

  • Faraldi F, Papa V, Santoro D, Rasá D, Mazza AL, Rabbione MM, Russo SA (2012) New eye gel containing sodium hyaluronate and xanthan gum for the management of post-traumatic corneal abrasions. Clin Ophthalmol 6:727–731

    Google Scholar 

  • Flickinger, FC, Draw, SW, (1999) Encyclopedia of Bioprocess Technology: Fermentation. vol 5, pp 2706–2707

    Google Scholar 

  • Flores-Candia JL, Deckwer WD (1999) Xanthan gum. In: Flickinger MC, Drew SW (eds) Fermentation, biocatalysis, and bioseparation, vol 1-5. Wiley, Hoboken, pp 2695–2711

    Google Scholar 

  • Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV (2010) Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Mater Sci Eng 30:196–202

    Article  Google Scholar 

  • Frank JF, Somkuti GA (1979) General properties of beta-galactosidase of Xanthomonas campestris. Appl Environ Microbiol 38:554–556

    Article  Google Scholar 

  • Funahashi H, Yoshida T, Taguchi H (1987) Effect of glucose concentration on xanthan gum production by Xanthomonas campestris. J Ferment Technol 65:603–606

    Article  Google Scholar 

  • Garcia-Ochoa F, Santos VE, Casas JA, Gomez E (2000) Xanthan gum: production, recovery and properties. Biotechnol Adv 18:549–579. https://doi.org/10.1016/S0734-9750(00)00050-1

    Article  Google Scholar 

  • Gardin H, Pauss A (2001) κ-carrageenan/gelatin gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2,4,6-trichlorophenol under air-limited conditions. Appl Microbiol Biotechnol 56:517–523. https://doi.org/10.1007/s002530000581

    Article  Google Scholar 

  • Geremia R, Rinaudo M (2005) In: Dimitriu S (ed) Polysaccharides: structural diversity and functional versalitity. Dekker M, New York, pp 411–430

    Google Scholar 

  • Gils PS, Ray D, Sahoo PK (2009) Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol 45:364–371

    Article  Google Scholar 

  • Gorle A, Pawara I, Achaliya A (2017) Design development and evaluation of transdermal drug delivery system of antipyretic agent. Int J Pharm Res Health Sci 5(4):1743–1749

    Google Scholar 

  • Gumus T, Demirci AS, Mirik M, Arici M, Aysan Y (2010) Xanthan gum production of Xanthomonas spp. isolated from different plants. Food Sci Biotechnol 19:201–206

    Article  Google Scholar 

  • Han GY, Wang G, Zhu X, Shao H, Liu F, Yang P, Ying Y, Wang F, Ling P (2012) Preparation of xanthan gum injection and its protective effect on articular cartilage in the development of osteoarthritis. Carbohydr Polym 87:1837–1842

    Article  Google Scholar 

  • Harika MJ, Kumar M, Sinhal A, Saifi A (2011) Recent development in novel drug delivery systems of herbal drugs. Int J Green Pharm 5(2):87–94

    Article  Google Scholar 

  • Hemar Y, Tamehana M, Munro P, Singh H (2001) Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum. Food Hydrocoll 15:565–574

    Article  Google Scholar 

  • Hui YH (ed) (2005) Handbook of food science, technology and engineering, vol 4. CRC Taylor and Francis, Boca Raton, p 3632

    Google Scholar 

  • Iijima M, Shinozaki M, Hatakeyama T, Takahashi M, Hatakeyama H (2007) AFM studies on gelation mechanism of xanthan gum hydrogels. Carbohydr Polym 68:701–707

    Article  Google Scholar 

  • Jackson C, Ofoefule S (2011) Use of xanthan gum and ethylcellulose in formulation of metronidazole for colon delivery. J Chem Pharm Res 3:11–20

    Google Scholar 

  • Jagdale SC, Pawar CR (2014) Application of design of experiment for polyox and xanthan gum coated floating pulsatile delivery of sumatriptan succinate in migraine treatment. Biomed Res Int 2014:1–11. https://doi.org/10.1155/2014/547212

    Article  Google Scholar 

  • Jamshidian M, Savary G, Grisel M, Picard C (2014) Stretching properties of xanthan and hydroxypropyl guar in aqueous solutions and in cosmetic emulsions. Carbohydr Polym 112:334–341. https://doi.org/10.1016/j.carbpol.2014

    Article  Google Scholar 

  • Jianlon W, Yi Q (1999) Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels. Chemosphere 38:3109–3117. https://doi.org/10.1016/S0045-6535(98)00516-5

    Article  Google Scholar 

  • Kandra P, Challa MM, Chinthala R (2018) Biopolymers for food design: consumer-friendly natural ingredients. In: Alexandru MG, Alina MH (eds) Handbook of food bioengineering, biopolymers for food design, 3rd edn. Academic, Cambridge, pp 1–32

    Google Scholar 

  • Katzbauer B (1998) Properties and applications of xanthan gum. Polym Degrad Stab 59(1–3):81–84

    Article  Google Scholar 

  • Kaur M, Sandhu KS, Arora A, Sharma A (2015) Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: physicochemical and sensory properties. LWT Food Sci Technol 62(1):628–632

    Article  Google Scholar 

  • Khalil M, Jan BM (2012) Herschel-Bulkley rheological parameters of a novel environmentally friendly lightweight biopolymer drilling fluid from Xanthan gum and starch. J Appl Polym Sci 124:595–606

    Article  Google Scholar 

  • Koocheki A, Ghandi A, Razavi S, Mortazavi SA, Vasiljevic T (2009) The rheological properties of ketchup as a function of different hydrocolloids and temperature. Int J Food Sci Technol 44:596–602

    Article  Google Scholar 

  • Kuo SM, Chang SJ, Wang HY, Tang SC (2014) Evaluation of the ability of xanthan gum/gellan gum/hyaluronan hydrogel membranes to prevent the adhesion of postrepaired tendons. Carbohydr Polym 114:230–237. https://doi.org/10.1016/j.carbpol.2014.07.049

    Article  Google Scholar 

  • Kuppuswami GM (2014) Production of xanthan gum. In: Encyclopedia of Food Microbiology, vol. 1. https://doi.org/10.1016/B978-0-12-384730-0.00110-5

  • Laffleur F, Michalek M (2017) Modified xanthan gum for buccal deliveryda promising approach in treating sialorrhea. Int J Biol Macromol 102:1250–1256

    Article  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  Google Scholar 

  • Lopes BM, Lessa VL, Silva BM, La Cerda LG (2015) Xanthan gum: properties, production conditions, quality and economic perspective. J Food Nutr Res 54(3):185–194

    Google Scholar 

  • Lu H, Guo L, Zhang L et al (2019) Study on quality characteristics of cassava flour and cassava flour short biscuits. Food Sci Nutr 8:521–533

    Article  Google Scholar 

  • Manca ML, Manconi M, Valenti D, Lai F, Loy G, Matricardi P (2011) Liposomes coated with chitosan—xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci 101(2):566–575

    Article  Google Scholar 

  • Michel G, Helbert W, Kahn R, Dideberg O (2003) The structural bases of the processive degradation of ι-carrageenan, a main cell wall polysaccharide of red algae. J Mol Biol 334:421–433. https://doi.org/10.1016/j.jmb.2003.09.056

    Article  Google Scholar 

  • Milas M, Rinaudo M, Knipper M, Schuppiser JL (1990) Macromolecules 23:2506

    Article  Google Scholar 

  • Mittal H, Parashar V, Mishra SB, Mishra AK (2014) Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chem Eng J 255:471

    Article  Google Scholar 

  • Mohammadi M, Sadeghnia N, Azizi MH, Neyestani TR, Mortazavian AM (2014) Development of gluten-free flat bread using hydrocolloids: xanthan and CMC. J Ind Eng Chem 20(4):1812–1818

    Article  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  • Monthe OC, Grosmaire L, Nguimbou RM, Dahdouh L, Ricci J, Tran T, Ndjouenkeu R (2019) Rheological and textural properties of gluten-free doughs and breads based on fermented cassava, sweet potato and sorghum mixed flours. LWT Food Sci Technol 101:575–582

    Article  Google Scholar 

  • Murad HA, Abo-Elkhair AG, Azzaz HH (2019) Production of xanthan gum from nontraditional substrates with perspective of the unique properties and wide industrial applications. JSMC Microbiol 1:6

    Google Scholar 

  • Nunes DG, da Silva APM, Cajaiba J, Perez-Gramatges A, Lachter ER (2014) Nascimento RSVJ. Appl Polym Sci 131:41085

    Google Scholar 

  • Osilesi O, Trout DL, Glover EE, Harper SM, Koh ET, Behall KM, O’Dorisio TM, Tartt J (1985) Use of xanthan gum in dietary management of diabetes mellitus. Am J Clin Nutr 42(4):597–603

    Article  Google Scholar 

  • Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12

    Article  Google Scholar 

  • Parente ME, Ochoa Andrade A, Ares G, Russo F, Jimenez-Kairuz A (2015) Bioadhesive hydrogels for cosmetic applications. Int J Cosmet Sci 37(5):511–518

    Article  Google Scholar 

  • Patel VF, Patel NM (2007) Statistical evaluation of influence of xanthan gum and guar gum blends on dipyridamole release from floating matrix tablets. Drug Dev Ind Pharm 33:327–334

    Article  Google Scholar 

  • Pelletier E, Viebke C, Meadows J, Williams PA (2001) A rheological study of the order–disorder conformational transition of xanthan gum. Biopolymers 59:339–346

    Article  Google Scholar 

  • Petri DFS (2015) Xanthan gum: a versatile biopolymer for biomedical and technological applications. J Appl Polym Sci 132:1–13

    Article  Google Scholar 

  • Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9

    Article  Google Scholar 

  • Preichardt LD, Vendruscolo CT, Gularte MA, Moreira AD (2011) The role of xanthan gum in the quality of gluten free cakes: improved bakery products for coeliac patients. Int J Food Sci Technol 46(12):2591–2597

    Article  Google Scholar 

  • Psomas SK, Liakopoulou-Kyriakides M, Kyriakidis DA (2007) Optimization study of xanthan gum production using response surface methodology. Biochem Eng J 35:273–280. https://doi.org/10.1016/j.bej.2007.01.036

    Article  Google Scholar 

  • Ramasamy T, Kandhasami UDS, Ruttala H, Shanmugam S (2011) Formulation and evaluation of xanthan gum based aceclofenac tablets for colon targeted drug delivery. Braz J Pharm Sci 47:2

    Article  Google Scholar 

  • Razavi M, Nyamathulla S, Karimian H (2014) Hydrogel polysaccharides of tamarind and xanthan to formulate hydrodynamically balanced matrix tablets of famotidine. Molecules 19:13909–13931. https://doi.org/10.3390/molecules1909.13909

    Article  Google Scholar 

  • Reiss MJ, Han YP, Garcia E, Goldberg M, Yu H, Garner WL (2010) Matrix metalloproteinase-9 delays wound healing in a murine wound model. Surgery 147(2):295–302

    Article  Google Scholar 

  • Roopa G, Bhat RS, Dakshina MS (2015) Formulation and evaluation of an antacid and anti-ulcer suspension containing herbal drugs. Biomed Pharmacol J 3(1):01–06

    Google Scholar 

  • Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas camprestris sp. Enzym Microb Technol 39:197–207. https://doi.org/10.1016/j.enzmictec.2005.10.019

    Article  Google Scholar 

  • Rosalam S, Krishnaiah D, Bono A (2008) Cell free xanthan gum production using continuous recycled packed fibrous-bed bioreactor-membrane. Malays J Microbiol 4:1–5

    Google Scholar 

  • Saharudin SH, Ahmad Z, Basri M (2016) Role of xanthan gum on physicochemical and rheological properties of rice bran oil emulsion. Int Food Res J 23(4):1361–1366

    Google Scholar 

  • Sahil K, Akanksha M, Premjeet S, Bilandi A, Kapoor B (2011) Microsphere: a review. Int J Res Pharm Chem 1:1184–1198

    Google Scholar 

  • Samia O, Hanan R, Kamal ET (2012) Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv 19(1):58–67

    Article  Google Scholar 

  • Sanderson GR (1982) The interactions of xantham gum in food systems. Prog Food Nutr Sci 6:77–87

    Google Scholar 

  • Sandolo C, Coviello T, Matricardi P, Alhaique F (2007) Characterization of polysaccharide hydrogels for modified drug delivery. Eur Biophys J 36(7):693–700

    Article  Google Scholar 

  • Santos H, Veiga F, Pina ME, Sousa JJ (2005) Compaction, compression and drug release properties of diclofenac sodium and ibuprofen pellets comprising xanthan gum as a sustained release agent. Int J Pharm 295:15–27

    Article  Google Scholar 

  • Santoshi AK, Venkatesham M, Ayodhya D, Veerabhadram G (2015) Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Appl Nanosci 5(3):315–320

    Article  Google Scholar 

  • Saudagar RB, Badhe KP (2016) Development and evaluation of ph dependent in situ nasal gel of loratadine. Eur J Biomed Pharm Sci 1(3):233–238

    Google Scholar 

  • Sharma BR, Naresh L, Dhuldhoya NC, Merchant SU, Merchant UC (2006) Xanthan gum—a boon to food industry. Food Promotion Chronicle 1(5):27–30

    Google Scholar 

  • Sharma A, Gautam S, Wadhawan S (2014) Xanthomonas. In: Batt CA, Tortorello M (eds) Encyclopedia of food microbiology, 2nd edn. Academic, Amsterdam, pp 811–817

    Chapter  Google Scholar 

  • Shiledar RR, Tagalpallewar AA, Kokare CR (2014) Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesive buccal patches of zolmitriptan. Carbohydr Polym 101:1234–1242

    Article  Google Scholar 

  • Shinde UA, Kanojiya SS (2014) Serratiopeptidase niosomal gel with potential in topical delivery. J Pharm 2014:1–9

    Google Scholar 

  • Shu CH, Yang ST (1990) Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris. Biotechnol Bioeng 35:454–468. https://doi.org/10.1002/bit.260350503

    Article  Google Scholar 

  • Singhvi G, Hans N, Shiva N, Kumar Dubey S (2019) Xanthan gum in drug delivery applications. In: Natural polysaccharides in drug delivery and biomedical applications, pp 121–144. https://doi.org/10.1016/b978-0-12-817055-7.00005-4

  • Smith JH, Page GW (1982) Recovery of microbial polysaccharides. J Chem Technol Biotechnol 32:119–129. https://doi.org/10.1002/jctb.5030320116

    Article  Google Scholar 

  • Sworn G (2009) Xanthan gum. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, 2nd edn. Woodhead Publishing, Cambridge, pp 186–203

    Chapter  Google Scholar 

  • Tiwari A, Kumar S (2009) Natural polymer in colon targeting. Int J Pharm Clin Res 1:43–46

    Google Scholar 

  • Vendruscolo C T, Moreira AS, Souza AS, Zambiazi R, Scamparini, ARP (2000) Heteropolysaccharides produced by Xanthomonas campestris pv pruni. vol 24, pp 187–191. https://doi.org/10.1016/B978-044450178-3/50022-6

  • Vendruscolo C, Andreazza I, Ganter J, Ferrero C, Bresolin T (2005) Xanthan and galactomannan (from M. Scabrella) matrix tablets for oral controlled delivery of theophylline. Int J Pharm 296(1–2):1–11

    Article  Google Scholar 

  • Verhoeven E, Vervaet C, Remon JP (2006) Xanthan gum to tailor drug release of sustained-release ethylcellulose mini-matrices prepared via hot-melt extrusion: in vitro and in vivo evaluation. Eur J Pharm Biopharm 63:320–330

    Article  Google Scholar 

  • Vishakha K, Kishor B, Sudha R (2012) Natural polymers—a comprehensive review. Int J Res Pharm Biomed Sci 3:1597–1613

    Google Scholar 

  • Wang F, Wang YJ, Sun Z (2002) Conformational role of xanthan in its interaction with locust bean gum. J Food Sci 67(7):2609–2614

    Article  Google Scholar 

  • Williams P, Clegg S, Day D, Phillips G, Nishinari K (1991) Mixed gels formed with konjac mannan and xanthan gum. In: Dickinson E (ed) Food polymers, gels and colloids. Royal Society of Chemistry, Cambridge, pp 339–348

    Chapter  Google Scholar 

  • Xia S, Zhang L, Davletshin A, Li Z, You J, Tan S (2020) Application of polysaccharide biopolymer in petroleum recovery. Polymers 12:1860. https://doi.org/10.3390/polym12091860

    Article  Google Scholar 

  • Xu W, Jin W, Lin L et al (2014) Green synthesis of xanthan conformation-based silver nanoparticles: antibacterial and catalytic application. Carbohydr Polym 101:961–967

    Article  Google Scholar 

  • Xue D, Sethi R (2012) Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro and nanoparticles. J Nanopart Res 14(11):1–14

    Article  Google Scholar 

  • Zhou W, Therdthai N, Hui YH (2014) Bakery products science and technology. Wiley, West Sussex, pp 1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaturvedi, S., Kulshrestha, S., Bhardwaj, K., Jangir, R. (2021). A Review on Properties and Applications of Xanthan Gum. In: Vaishnav, A., Choudhary, D.K. (eds) Microbial Polymers. Springer, Singapore. https://doi.org/10.1007/978-981-16-0045-6_4

Download citation

Publish with us

Policies and ethics