Skip to main content

Seismic Mitigation Liquefaction––An Extensive Study on New Concepts

  • Conference paper
  • First Online:
Local Site Effects and Ground Failures

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 117))

  • 372 Accesses

Abstract

Liquefaction of soil significantly affects the life of buildings as well as the life of humans. Liquefaction develops when the shear strength of the soil is lesser to resist the shear stresses induced when subjected to dynamic loadings during vibration or an earthquake. In order to improve the load-bearing capacity so as to mitigate the liquefaction characteristics, the addition of chemicals in soil can also be used. Addition of chemicals can be done in two ways. The first method in which void spaces can be filled by grouting/stabilising material, whereas the second method is the mechanical stabilisation of external materials. The modifications of soil to upgrade its properties through grouting technologies are extensively popular these days. The present study is an attempt to study the non-conventional seismic liquefaction mitigation methods. Also, this study reviews the most significant laboratory tests with respect to liquefaction mitigation and compares colloidal silica with many other recent liquefaction mitigation techniques such as bentonite suspension grouting, bio-cementation, colloidal silica grout and sand–rubber tire shred mixtures. The current study revealed that the two main grouts, which can be used as a prospective liquefaction reduction materials in the upcoming era are colloidal silica and bentonite suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Werner SD, Dickenson SE, Taylor CE (1997) Seismic risk reduction at ports: case studies and acceptable risk evaluation. J Waterway Port Coastal Ocean Eng 123(6):246–337

    Article  Google Scholar 

  2. Mitchell JK, Baxter CDP, Munson TC (1995) Performance of improved ground during Earthquakes. In: Soil improvement for liquefaction hazard mitigation, Geotech special Pub No 49, ASCE, pp 1–36

    Google Scholar 

  3. Marcuson WF, Hadala PF, Ledbetter RH (1996) Seismic rehabilitation of earth dams. J Geotech Eng ASCE 122(1):7–20

    Google Scholar 

  4. Elias V, Welsh J, Wareen J, Lukas R, Collin J, Berg R (2006) Ground improvement methods: reference manual, vol I. NHI Course No 13204, Federal Highway Administration, Washington, DC

    Google Scholar 

  5. Mitchell JK (2008) Mitigation of liquefaction potential of silty sands. In: From research to practice in geotechnical engineering, ASCE, pp 433–451

    Google Scholar 

  6. Chu J, Varaksin S, Klotz U, Menge P (2009) Construction Process. In: Proceedings of 17th international conference on soil mechanics and geotechnical engineering, IOS Press, Fairfax, VA, pp 3006–3135

    Google Scholar 

  7. Hazarika H, Yasuhara K, Kikuchi Y, Karmokar AK, Mitarai Y (2010) Multifaceted potentials of tire-derived three dimensional geosynthetics in geotechnical applications and their evaluation. Geotext Geomembranes. https://doi.org/10.1016/j.geotexmem.2009.10.011

    Article  Google Scholar 

  8. Tafreshi SNM, Norouzi AH (2013) Bearing capacity of a square model footing on sand reinforced with shredded tire—an experimental investigation. Constr Build Mater (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.092

  9. Madhusudhan BR, Boominathan A, Banerjee S (2017) Static and large-strain dynamic properties of sand-rubber tire shred mixtures. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002016

    Article  Google Scholar 

  10. Bahadori H, Manafi S (2015) Effect of tyre chips on dynamic properties of saturated sands. Int J Phys Model Geotech. https://doi.org/10.1680/ijpmg.13.00014

    Article  Google Scholar 

  11. Senetakis K, Anastasiadis A, Pitilakis K (2012) Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes. Soil Dyn Earthq Eng. https://doi.org/10.1016/j.soildyn.2011.10.003

    Article  Google Scholar 

  12. Brara A, Brara A, Daouadji A, Bali A, Daya EM (2017) Dynamic properties of dense sand-rubber mixtures with small particles size ratio. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2016.1139509

  13. Krishnan J, Shukla S (2019) The behaviour of soil stabilised with nanoparticles: an extensive review of the present status and its applications. Arab J Geosci 12:436. https://doi.org/10.1007/s12517-019-4595-6

    Article  Google Scholar 

  14. Gallagher PM, Pamuk A, Abdoun T (2007) Stabilisation of liquefiable soils using colloidal silica grout. J Mater Civ Eng 19:33–40. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33)

    Article  Google Scholar 

  15. Consoli (2004) Effect of material properties on the behavior of sand-cement–fiber composites. Proc Inst Civ Eng Gr Improv 8:77–90. https://doi.org/10.1680/Grim.2004.8.2.77

  16. Gallagher PM, Mitchell JK (2002) Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dyn Earthq Eng 22:1017–1026. https://doi.org/10.1016/S0267-7261(02)00126-4

    Article  Google Scholar 

  17. Kodaka T, Oka F, Ohno Y, Takyu T, Yamasaki N (2005) Modeling of cyclic deformation and strength characteristics of silica treated sand. Geotech Spec Pub. https://doi.org/10.1061/40797(172)11

  18. Díaz-Rodríguez JA, Antonio-Izarraras VM, Bandini P, López-Molina JA (2008) Cyclic strength of a natural liquefiable sand stabilized with colloidal silica grout. Can Geotech J 45:1345–1355. https://doi.org/10.1139/T08-072

  19. Conlee CT, Gallagher PM, Boulanger RW, Kamai R (2012) Centrifuge modeling for liquefaction mitigation using colloidal silica stabilizer. J Geotech Geoenviron Eng 138:1334–1345. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000703

    Article  Google Scholar 

  20. Spencer L, Rix GJ, Gallagher P (2008) Colloidal silica gel and sand mixture dynamic properties. Geotech Earthq Eng Soil Dyn IV:1–10. https://doi.org/10.1061/40975(318)101

  21. Mohtar CSE, Bobet A, Santagata MC, Drnevich VP, Johnston CT (2013) Liquefaction mitigation using bentonite suspensions. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000865

    Article  Google Scholar 

  22. El Mohtar CS, Clarke J, Bobet A, Santagata M, Drnevich V, Johnston C (2008) Cyclic response of a sand with thixotropic pore fluid. Geotech Spec Pub. https://doi.org/10.1061/40975(318)63

  23. Salgado R, Bandini P, Karim A (2000) Shear strength and stiffness of silty sand. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)

    Article  Google Scholar 

  24. Rugg DA, Yoon J, Hwang H, El Mohtar CS (2011) Undrained shearing properties of sand permeated with a bentonite suspension for static liquefaction mitigation. Geotech Spec Pub. https://doi.org/10.1061/41165(397)70

  25. Yoon J, Mohtar CE (2013) Dynamic rheological properties of sodium pyrophosphate-modified bentonite suspensions for liquefaction mitigation. Clays Clay Miner. https://doi.org/10.1346/CCMN.2013.0610411

    Article  Google Scholar 

  26. Montoya BM, DeJong JT, Boulanger RW (2013) Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique. https://doi.org/10.1680/geot.SIP13.P.019

    Article  Google Scholar 

  27. Burbank M, Weaver T, Lewis R, Williams T, Williams B, Crawford R (2013) Geotechnical tests of sands following bioinduced calcite precipitation catalysed by indigenous bacteria. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781

    Article  Google Scholar 

  28. Xiao P, Liu H, Stuedlein AW, Evans TM, Xiao Y (2019) Effect of relative density and biocementation on cyclic response of calcareous sand. Can Geotech J. https://doi.org/10.1139/cgj-2018-0573

    Article  Google Scholar 

  29. Huang Y, Wen Z (2015) Recent developments of soil improvement methods for seismic liquefaction mitigation. https://doi.org/10.1007/s11069-014-1558-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiji Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnan, J., Shukla, S. (2021). Seismic Mitigation Liquefaction––An Extensive Study on New Concepts. In: Sitharam, T.G., Jakka, R., Govindaraju, L. (eds) Local Site Effects and Ground Failures. Lecture Notes in Civil Engineering, vol 117. Springer, Singapore. https://doi.org/10.1007/978-981-15-9984-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9984-2_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9983-5

  • Online ISBN: 978-981-15-9984-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics