Skip to main content

A Novel Hybrid Approach to the Sixth-Order Cahn-Hillard Time-Fractional Equation

  • 216 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1287)

Abstract

This research focuses on the numerical analysis of the time-fractional sixth-order Cahn-Hillard equation by a novel hybrid approach using new integral and projected differential transform processes. Compared to other techniques, the new integrated projected differential transforms process, NIPDTM is much more effective and easier to handle. The results from the illustrative cases indicate the competence and consistency of the proposed procedure. The graphical result achieved through the presented method compared to the numerical integration method (NIM) and the q-homotopy analysis method (q-HAM) solution. The suggested method simplifies the calculation and makes it very simple to handle nonlinear terms with this method without using Adomian’s & He’s polynomial.

Keywords

  • Integral transform method
  • Projected differential transform method
  • Sixth-order time-fractional Cahn-Hillard Equation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-9953-8_7
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-9953-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Lazarević, M.P., Rapaić, M.R., Šekara, T.B., Mladenov, V., Mastorakis, N.: Introduction to fractional calculus with brief historical background. In: Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling. WSAES Press, pp. 3–16 (2014)

    Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Elsevier (1998)

    Google Scholar 

  3. Alchikh, R., Khuri, S.A.: An iterative approach for the numerical solution of fractional bvps. Int. J. Appl. Comput. Math. 5(6), 147 (2019)

    CrossRef  MathSciNet  Google Scholar 

  4. Baleanu, D., Güvenç, Z.B., Tenreiro Machado, J.A. et al.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer (2010)

    Google Scholar 

  5. Feng, M., Zhang, X., Ge, W.G.: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011(1), 720702 (2011)

    CrossRef  MathSciNet  Google Scholar 

  6. Güner, Ö., Bekir, A.: Exact solutions of some fractional differential equations arising in mathematical biology. International Journal of Biomathematics 8(01), 1550003 (2015)

    CrossRef  MathSciNet  Google Scholar 

  7. Han, Z., Li, Y., Sui, M.: Existence results for boundary value problems of fractional functional differential equations with delay. J. Appl. Math. Comput. 51(1–2), 367–381 (2016)

    CrossRef  MathSciNet  Google Scholar 

  8. Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018)

    CrossRef  Google Scholar 

  9. Mohamed, M.S.: Analytical approximate solutions for the nonlinear fractional differential-difference equations arising in nanotechnology. Glob. J. Pure Appl. Math 13, 7637–7652 (2017)

    Google Scholar 

  10. Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58(11–12), 2199–2208 (2009)

    CrossRef  MathSciNet  Google Scholar 

  11. Shah, K., Singh, T., Kılıçman, A.: Combination of integral and projected differential transform methods for time-fractional gas dynamics equations. Ain Shams Eng. J. 9(4), 1683–1688 (2018)

    CrossRef  Google Scholar 

  12. Xu, M., Sun, S.: Positivity for integral boundary value problems of fractional differential equations with two nonlinear terms. J. Appl. Math. Comput. 59(1–2), 271–283 (2019)

    CrossRef  MathSciNet  Google Scholar 

  13. Kashuri, A., Fundo, A., Liko, R.: New integral transform for solving some fractional differential equations. Int. J. Pure Appl. Math. 103(4), 675–682 (2015)

    Google Scholar 

  14. Jang, B.: Solving linear and nonlinear initial value problems by the projected differential transform method. Comput. Phys. Commun. 181(5), 848–854 (2010)

    CrossRef  MathSciNet  Google Scholar 

  15. Shah, K., Singh, T.: The combined approach to obtain approximate analytical solution of instability phenomenon arising in secondary oil recovery process. Comput. Appl. Math. 37(3), 3593–3607 (2018)

    CrossRef  MathSciNet  Google Scholar 

  16. Singh, B.K.: Homotopy perturbation new integral transform method for numeric study of space-and time-fractional (n+ 1)-dimensional heat-and wave-like equations. Waves Wavelets Fractals 4(1), 19–36 (2018)

    CrossRef  Google Scholar 

  17. Kumar, D., Singh, J., Baleanu, D.: A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. 40(15), 5642–5653 (2017)

    CrossRef  MathSciNet  Google Scholar 

  18. Kumar, D., Singh, J., Baleanu, D.: A new numerical algorithm for fractional fitzhugh-nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 91(1), 307–317 (2018)

    CrossRef  MathSciNet  Google Scholar 

  19. Singh, J., Kumar, D., Kumar, S.: New treatment of fractional fornberg-whitham equation via laplace transform. Ain Shams Eng. J. 4(3), 557–562 (2013)

    CrossRef  Google Scholar 

  20. Ainsworth, M., Mao, Z.: Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55(4), 1689–1718 (2017)

    CrossRef  MathSciNet  Google Scholar 

  21. Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified kudryashov method. Optik 132, 203–209 (2017)

    CrossRef  Google Scholar 

  22. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional allen-cahn and cahn-hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76(8), 1876–1892 (2018)

    CrossRef  MathSciNet  Google Scholar 

  23. Caputo, M.: Elasticita e Dissipazione. Zani-Chelli, Bologna (1969)

    Google Scholar 

  24. Akinyemi, L., Iyiola, O.S., Akpan, U.: Iterative methods for solving fourth-and sixth-order time-fractional Cahn-Hillard equation. Math. Methods Appl. Sci. 43(7), 4050–4074 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunjan Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Shah, K., Patel, H. (2021). A Novel Hybrid Approach to the Sixth-Order Cahn-Hillard Time-Fractional Equation. In: Sahni, M., Merigó, J.M., Jha, B.K., Verma, R. (eds) Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy. Advances in Intelligent Systems and Computing, vol 1287. Springer, Singapore. https://doi.org/10.1007/978-981-15-9953-8_7

Download citation