Skip to main content

Recent Progress on Nanostructured Materials for Biomedical Applications

  • Chapter
  • First Online:
Nanotechnology for Advances in Medical Microbiology

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 591 Accesses

Abstract

The focus of this chapter is to explore the progress of nanostructured materials and their potential biomedical applications. Nanotechnology offers incredible opportunities in manipulating chemical and biological entities at the nano scale level. The nanoscience plays a key role in technological development for biomedical applications, especially in the areas of preclinical diagnosis, non- or minimal invasive biomedical imaging, drug discovery, and drug delivery. This research work discusses a brief history of nanotechnology, different synthetic routes, characterizations, fundamental concepts regarding morphologies, characteristics, biological interactions, and clinical applications. A few nanoparticles such as metal nanoparticles (Au, Ag, Pt, etc.), magnetic and metal oxide nanoparticles (Fe3O4, Fe2O3, ZnO, TiO2, etc.), quantum dots (CdTe, Cds, etc.), mesoporous silica nanoparticles, carbon nano tubes (CNT, SWNT, etc.), ceramics nano materials (apatite, hydroxyapatite, bio-glass, etc.), polymeric nanoparticles (polypyrrole, β-cyclodextrin, chitosan, fucoidan, etc.) are widely used in biomedical field. In this article, we present the recent trend and challenges in the advances of nanomaterials for clinical applications. This review might be considered as a general guide and will help the readers to find key information regarding the recent advances in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam K, Mohamed AA, Prasad R (2019) Magnetic nanostructures: environmental and agricultural applications. Springer International Publishing, Cham. ISBN 978-3-030-16438-6. https://www.springer.com/gp/book/9783030164386

    Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    PubMed  PubMed Central  Google Scholar 

  • Alpaslan E, Yazici H, Golshan NH, Ziemer KS, Webster TJ (2015) pH-dependent activity of dextran-coated cerium oxide nanoparticles on prohibiting osteosarcoma cell proliferation. ACS Biomater Sci Eng 1(11):1096–1103

    CAS  PubMed  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles, Article ID 689419. https://doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366

    CAS  PubMed  Google Scholar 

  • Bangham AD, Horne R (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8(5):660–IN10

    CAS  PubMed  Google Scholar 

  • Bharathiraja S, Bui NQ, Manivasagan P et al (2018) Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci Rep 8(1):1–16

    CAS  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60(11):1289–1306

    CAS  PubMed  Google Scholar 

  • Chatterjee K, Sarkar S, Rao KJ, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci 209:8–39

    CAS  Google Scholar 

  • Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126(48):15638–15639

    CAS  PubMed  Google Scholar 

  • Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cressman S, Dobson I, Lee JB, Tam YYC, Cullis PR (2009) Synthesis of a labeled RGD− lipid, its incorporation into liposomal nanoparticles, and their trafficking in cultured endothelial cells. Bioconjug Chem 20(7):1404–1411

    CAS  PubMed  Google Scholar 

  • De Crozals G, Bonnet R, Farre C, Chaix C (2016) Nanoparticles with multiple properties for biomedical applications: a strategic guide. Nano Today 11(4):435–463. https://doi.org/10.1016/j.nantod.2016.07.002

    Article  CAS  Google Scholar 

  • Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA (2020) Injectable cryogels for biomedical applications. Trends Biotechnol 38(4):418–431

    CAS  PubMed  Google Scholar 

  • Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA et al (2010) Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res 29(1):148

    PubMed  PubMed Central  Google Scholar 

  • Hafner JH, Bronikowski MJ, Azamian BR et al (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 296(1–2):195–202

    CAS  Google Scholar 

  • Hainfeld J, Slatkin D, Focella T, Smilowitz H (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

    CAS  PubMed  Google Scholar 

  • Kam N, Jessop T, Wender P, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126(22):6850–6851

    CAS  Google Scholar 

  • Kee PH, Danila D (2018) CT imaging of myocardial scar burden with CNA35-conjugated gold nanoparticles. Nanomedicine 14(6):1941–1947. https://doi.org/10.1016/j.nano.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Mondal S, Bharathiraja S, Manivasagan P, Moorthy MS, Oh JJCI (2018a) Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int 44(6):6062–6071

    CAS  Google Scholar 

  • Kim H, Mondal S, Jang B, Manivasagan P, Moorthy MS, Oh J (2018b) Biomimetic synthesis of metal–hydroxyapatite (Au-HAp, Ag-HAp, Au-Ag-HAp): structural analysis, spectroscopic characterization and biomedical application. Ceram Int 44(16):20490–20500. https://doi.org/10.1016/j.ceramint.2018.08.045

    Article  CAS  Google Scholar 

  • Kobayashi H, Kawamoto S, Jo S-K, Bryant HL, Brechbiel MW, Star RA (2003) Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14(2):388–394

    CAS  PubMed  Google Scholar 

  • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 24(6):721–734

    CAS  PubMed  Google Scholar 

  • Koole R, van Schooneveld MM, Hilhorst J et al (2008) Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug Chem 19(12):2471–2479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23(7):844–854

    PubMed  Google Scholar 

  • Liao H, Nehl CL, Hafner JH (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1(2):201–208

    CAS  PubMed  Google Scholar 

  • Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305

    CAS  PubMed  Google Scholar 

  • Liu T, Tang A, Zhang G et al (2005) Calcium phosphate nanoparticles as a novel nonviral vector for efficient transfection of DNA in cancer gene therapy. Cancer Biother Radiopharm 20(2):141–149

    CAS  PubMed  Google Scholar 

  • Maitra A (2005) Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn 5(6):893–905

    CAS  PubMed  Google Scholar 

  • Manivasagan P, Bharathiraja S, Santha Moorthy M et al (2018) Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol 38(5):745–761

    CAS  PubMed  Google Scholar 

  • Manivasagan P, Hoang G, Santha Moorthy M et al (2019a) Chitosan/fucoidan multilayer coating of gold nanorods as highly efficient near-infrared photothermal agents for cancer therapy. Carbohydr Polym 211:360–369. https://doi.org/10.1016/j.carbpol.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Jun SW, Truong NTP et al (2019b) A multifunctional near-infrared laser-triggered drug delivery system using folic acid conjugated chitosan oligosaccharide encapsulated gold nanorods for targeted chemo-photothermal therapy. J Mater Chem B 7(24):3811–3825

    CAS  Google Scholar 

  • Manivasagan P, Khan F, Hoang G et al (2019c) Thiol chitosan-wrapped gold nanoshells for near-infrared laser-induced photothermal destruction of antibiotic-resistant bacteria. Carbohydr Polym 225:115228. https://doi.org/10.1016/j.carbpol.2019.115228

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Nguyen VT, Jun SW et al (2019d) Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy. J Control Release 311-312:26–42. https://doi.org/10.1016/j.jconrel.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  • McNamara K, Tofail SA (2017) Nanoparticles in biomedical applications. Advances in Physics: X 2(1):54–88

    CAS  Google Scholar 

  • Mirkin CA (2000) Programming the assembly of two-and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 39(11):2258–2272

    CAS  PubMed  Google Scholar 

  • Mondal S, Oh J (2019) Nanostructured materials and their biomedical application. In: Biomedical engineering and its applications in healthcare. Springer, pp 205–227

    Google Scholar 

  • Mondal S, Pal U (2019) 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. Journal of Drug Delivery Science and Technology 53:101131. https://doi.org/10.1016/j.jddst.2019.101131

    Article  CAS  Google Scholar 

  • Mondal S, Dey A, Pal U (2016a) Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study. Advances in Nano Research 4(4):295

    Google Scholar 

  • Mondal S, Pal U, Dey A (2016b) Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceram Int 42(16):18338–18346. https://doi.org/10.1016/j.ceramint.2016.08.165

    Article  CAS  Google Scholar 

  • Mondal S, Manivasagan P, Bharathiraja S et al (2017a) Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia cancer treatment. Nano 7(12):426

    Google Scholar 

  • Mondal S, Reyes MEDA, Pal U (2017b) Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv 7(14):8633–8645

    CAS  Google Scholar 

  • Mondal S, Dorozhkin SV, Pal U (2018a) Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. WIREs Nanomedicine and Nanobiotechnology 10(4):e1504. https://doi.org/10.1002/wnan.1504

    Article  PubMed  Google Scholar 

  • Mondal S, Hoang G, Manivasagan P et al (2018b) Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceram Int 44(13):15735–15746. https://doi.org/10.1016/j.ceramint.2018.05.248

    Article  CAS  Google Scholar 

  • Mondal S, Hoang G, Manivasagan P, Kim H, Oh J (2019a) Nanostructured hollow hydroxyapatite fabrication by carbon templating for enhanced drug delivery and biomedical applications. Ceram Int 45(14):17081–17093. https://doi.org/10.1016/j.ceramint.2019.05.260

    Article  CAS  Google Scholar 

  • Mondal S, Hoang G, Manivasagan P et al (2019b) Rapid microwave-assisted synthesis of gold loaded hydroxyapatite collagen nano-bio materials for drug delivery and tissue engineering application. Ceram Int 45(3):2977–2988. https://doi.org/10.1016/j.ceramint.2018.10.016

    Article  CAS  Google Scholar 

  • Mondal S, Manivasagan P, Oh J (2020a) Marine polysaccharide-based nanomaterials. Encyclopedia of Marine Biotechnology 2:1231–1248

    Google Scholar 

  • Mondal S, Nguyen TP, Hoang G et al (2020b) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int 46(3):3443–3455

    CAS  Google Scholar 

  • Mondal S, Nguyen TP, Pham VH et al (2020c) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int 46(3):3443–3455. https://doi.org/10.1016/j.ceramint.2019.10.057

    Article  CAS  Google Scholar 

  • Mondal S, Nguyen VT, Park S et al (2020d) Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.08.099

  • Mondal S, Nguyen VT, Park S et al (2020e) Bioactive, luminescent erbium-doped hydroxyapatite nanocrystals for biomedical applications. Ceramics international 46(10, part B):16020-16031. https://doi.org/10.1016/j.ceramint.2020.03.152

  • Moorthy MS, Subramanian B, Panchanathan M et al (2017) Fucoidan-coated core–shell magnetic mesoporous silica nanoparticles for chemotherapy and magnetic hyperthermia-based thermal therapy applications. New J Chem 41(24):15334–15346

    Google Scholar 

  • Moorthy MS, Bharathiraja S, Manivasagan P et al (2018) Synthesis of Fe 3 O 4 modified mesoporous silica hybrid for pH-responsive drug delivery and magnetic hyperthermia applications. J Porous Mater 25(4):1251–1264

    CAS  Google Scholar 

  • Moorthy MS, Hoang G, Manivasagan P et al (2019) Chitosan oligosaccharide coated mesoporous silica nanoparticles for pH-stimuli responsive drug delivery applications. J Porous Mater 26(1):217–226

    CAS  Google Scholar 

  • Muchow M, Maincent P, Müller RH (2008) Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev Ind Pharm 34(12):1394–1405

    CAS  PubMed  Google Scholar 

  • Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo 19(1):142–164

    CAS  Google Scholar 

  • Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    CAS  Google Scholar 

  • Ngo C, Yoon S, Chua S (2009) Ambient temperature dependence on emission spectrum of InAs quantum dots. Phys Status Solidi B 246(4):799–802

    CAS  Google Scholar 

  • Pantarotto D, Briand J-P, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 10(1):16–17

    Google Scholar 

  • Phan TTV, Bui NQ, Cho S-W et al (2018) Photoacoustic imaging-guided photothermal therapy with tumor-targeting HA-FeOOH@ PPy nanorods. Sci Rep 8(1):1–13

    Google Scholar 

  • Phan TTV, Huynh T-C, Manivasagan P, Mondal S, Oh J (2020) An up-to-date review on biomedical applications of palladium nanoparticles. Nano 10(1):66

    CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles, Article ID 963961. https://doi.org/10.1155/2014/963961

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, London, pp 53–70

    Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing, Cham. ISBN 978-3-319-99570-0. https://www.springer.com/978-3-319-99570-0

    Google Scholar 

  • Prasad R, Siddhardha B, Dyavaiah M (2020) Nanostructures for antimicrobial and antibiofilm applications. Springer International Publishing, Cham. ISBN 978-3-030-40336-2. https://www.springer.com/gp/book/9783030403362

    Google Scholar 

  • Qin Y, Sun L, Li X et al (2011) Highly water-dispersible TiO2 nanoparticles for doxorubicin delivery: effect of loading mode on therapeutic efficacy. J Mater Chem 21(44):18003–18010

    CAS  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763

    CAS  PubMed  Google Scholar 

  • Singh S, Kumar V, Dhanjal DS, Datta S, Prasad R, Singh J (2020) Biological biosensors for monitoring and diagnosis. In: Singh J, Vyas A, Wang S, Prasad R (eds) Microbial biotechnology: basic research and applications. Springer Nature, Singapore, pp 317–336

    Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: using living forms for metal nanoparticle synthesis. Mini-Rev Med Chem 21(2):245–265

    CAS  PubMed  Google Scholar 

  • Talapin DV, Mekis I, Götzinger S, Kornowski A, Benson O, Weller H (2004) CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core – shell − shell nanocrystals. J Phys Chem B 108(49):18826–18831

    CAS  Google Scholar 

  • Thangadurai D, Sangeetha J, Prasad R (2020a) Nanotechnology for food, agriculture, and environment. Springer International Publishing, Cham. ISBN 978-3-030-31937-3. https://www.springer.com/gp/book/9783030319373

    Google Scholar 

  • Thangadurai D, Sangeetha J, Prasad R (2020b) Functional bionanomaterials. Springer International Publishing, Cham. ISBN 978-3-030-41464-1. https://www.springer.com/gp/book/9783030414634

    Google Scholar 

  • Wiener E, Brechbiel M, Brothers H et al (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31(1):1–8

    CAS  PubMed  Google Scholar 

  • Wunderbaldinger P, Josephson L, Weissleder R (2002) Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 9(2):S304–S306

    PubMed  Google Scholar 

  • Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 9(15):2363–2371

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghwan Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Park, S., Choi, J., Oh, J. (2021). Recent Progress on Nanostructured Materials for Biomedical Applications. In: Maddela, N.R., Chakraborty, S., Prasad, R. (eds) Nanotechnology for Advances in Medical Microbiology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9916-3_15

Download citation

Publish with us

Policies and ethics