Skip to main content

Nanomaterials for Pharmaceutical Applications

  • Chapter
  • First Online:
Emerging Trends in Nanotechnology

Abstract

The field of medicine and pharmaceuticals has experienced revolutionary changes due to the development of nanotechnology. Materials or their constructions with size less than 100 nm along at least one dimension are termed as nanoparticulates. Nanoparticulates possess a greater surface area to volume ratio in comparison with bulk materials with the same composition to provide them enhanced selective therapeutic activity and are useful in the pharmaceutical field besides many other applications. Novel formulations of nanomaterials are being developed for drug encapsulation, targeted drug delivery systems (TDDs), and diagnostic purposes. Examples include polymeric nanoparticles in the form of nanospheres and nanocapsules; colloidal drug carriers such as micelles, dendrimers; phospholipid-based drug delivery systems, e.g., liposomes, phytosomes, ethosomes, etc.; solid-lipid nanoparticles (SLNs); niosomes; biphasic systems such as nanoemulsions and nanocomposite hydrogels; quantum dots; carbon nanotubes (CNTs), etc. TDDs involve direct application of drugs to the desired individual tissues with minimal damage to non-target tissues and organs resulting in the lesser requirement of drugs with enhanced biological response and protection from physical and chemical degradation. Nonmaterials not only increase the therapeutic value of drugs but also reduce their toxicological effects compared to conventional therapies. Nanomaterials, especially lipidic systems have excellent biotransformation response besides enhancing solubility and bioavailability of drugs. Nanoparticle-based dosage forms utilizing enhanced permeation and retention (EPR) effect through the biological barriers help in improving the pharmacokinetic profile and pharmacodynamic activity of the drugs. This chapter is devoted to various nanoparticulates (synthetic, semi-synthetic, and natural) having existing and potential applications in the pharmaceutical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poole CP Jr, Frank J (2003) Owens; introduction to nanotechnology. Wiley Interscience, New Jersey, pp 1–388

    Google Scholar 

  2. Singh S (2017) Nanoscience and nanotechnology, 1st edn, pp 1–352. Pragati Prakashan, Meerut, India

    Google Scholar 

  3. Smijs TGM et al (2011) Nanotechnol Sci Appl 4(1):95–112

    Google Scholar 

  4. Franci G et al (2015) Molecules 20:8856–8874

    Article  CAS  Google Scholar 

  5. Gupta M, Sharma V (2011) Res J Chem Sci 1(2):135–138

    Google Scholar 

  6. Wu L, San L (2011) J. Nanomater. https://doi.org/10.1155/2011/530874

  7. Brahamdutt et al (2018) Int J Res Dev Pharm Life Sci. https://dx.doi.org/10.21276/IJRDPL.2278-0238.2018.7(3).2969-2981

  8. Sharma D, Hussain CM (2018) Arab J Chem. https://doi.org/10.1016/j.arabjc,2018.11.007

  9. Liu J et al (2014) Biotechnol Adv 32(4):693–710

    Article  CAS  Google Scholar 

  10. Chen S et al (2013) Eur J Nanomed 5(2):61–79

    Article  Google Scholar 

  11. Chatterjee DK, Yong Z (2008) Nanomedicine 3:373–382

    Article  Google Scholar 

  12. Lantsova AV et al (2020) Bull Exp Biol Med 168(3):361–365

    Google Scholar 

  13. Ho YP, Leong KW (2010) Nanoscale 2:60–68

    Article  CAS  Google Scholar 

  14. Chang S et al (2009) Toxicol Lett 188:104–111

    Article  CAS  Google Scholar 

  15. Akbarzadeh et al (2018) Exp Oncol 40(3):178–183

    Article  CAS  Google Scholar 

  16. Misra et al (2010) Drug Discov Today 15:842–850

    Article  CAS  Google Scholar 

  17. Bechet D et al (2008) Trends Biotechnol 26:612–621

    Article  CAS  Google Scholar 

  18. Singh S (2019) Nanomaterials and applications, 1st edn. Pragati Prakashan, Meerut, India

    Google Scholar 

  19. Olivo M et al (2010) Pharmaceuticals 3:1507–1529

    Article  CAS  Google Scholar 

  20. Ghosh S et al (2009) ACS Nano 3:2667–2673

    Article  CAS  Google Scholar 

  21. Huang X et al (2006) J Am Chem Soc 128:2115–2120

    Article  CAS  Google Scholar 

  22. Khandhar AP et al (2011) J Appl Phys 310:109

    Google Scholar 

  23. Liu X et al (2012) J Mater Chem 22:8235–8244

    Article  CAS  Google Scholar 

  24. Wang J et al (2011) Ultrason Sonochem 18:177–183

    Article  CAS  Google Scholar 

  25. Hernandez R et al (2004) J Am Chem Soc 126:33370–33371

    Article  CAS  Google Scholar 

  26. Kim K et al (2010) J Control Release 146:219–227

    Article  CAS  Google Scholar 

  27. https://commons.wikimedia.org/wiki/File:Micelle_scheme-en.svg. accessed on 25 June 2020

  28. Tiwari Gaurav et al (2012) Int J Pharm Investig 2(1):2–11

    Article  CAS  Google Scholar 

  29. Soleymani Abyaneh H. et al.; Acta Biomater., Vol 24, (2015), pp 127–139: https://doi.org/10.1016/j.actbio.2015.06.017

  30. Owen SC et al (2012) Nano Today 7:53–65

    Google Scholar 

  31. Nishi H (1997) J Chromatogr A 780(1–2):243–264

    Article  CAS  Google Scholar 

  32. Kuno M (2004) Introduction to nanoscience and nanotechnology: a workbook, pp 185–186

    Google Scholar 

  33. Li Y et al (2018) J Drug Target 26(9):753–765

    Article  CAS  Google Scholar 

  34. Amjad MW et al (2017) Progress in polymer science, vol 64, pp 154–181

    Google Scholar 

  35. Taghavi N et al (2013) Hacettepe J Biol Chem 41(3):289–299

    Google Scholar 

  36. Shi X et al (2018) Pharmaceutics 10(3):162

    Google Scholar 

  37. Lyu Z et al (2019) Mater Today Chem 13:34–38

    Article  CAS  Google Scholar 

  38. Zhu J, Shi X (2013) J Mater Chem 1:4199–4211

    CAS  Google Scholar 

  39. Abbasi E et al (2014) Nanoscale Res Lett 9:247

    Google Scholar 

  40. Mehra NK et al (2015) Drug Discovery Today 20:750–759

    Article  CAS  Google Scholar 

  41. Christoforidis JB et al (2012) Hindawi Publishing Corporation. https://doi.org/10.1155/2012/126463

  42. Mady M et al (2009) Biophys Structure Mechanism 38(8):1127–1133

    CAS  Google Scholar 

  43. Zhou F et al (2018) Food Hydrocolloids 83. https://doi.org/10.1016/j.foodhyd.2018.04.040

  44. Chen et al (2016) Colloids Surfaces B Biointerfaces 143:455–462

    Article  CAS  Google Scholar 

  45. Wei X-Q et al (2019) ACS omega. https://dx.doi.org/10.1021/acsomega.9603293

  46. Han et al (2016) Int J Nanomed 11:1413–1425

    Article  CAS  Google Scholar 

  47. Kibria G et al (2011) J Controlled Release 153:141–148

    Article  CAS  Google Scholar 

  48. Markov OO et al (2012) J Controlled Release 160:200–210

    Article  CAS  Google Scholar 

  49. Yuan L et al (2013) Int J Pharm 454:82–89

    Article  CAS  Google Scholar 

  50. Miatmoko A et al (2019) European Pharmaceutical J

    Google Scholar 

  51. Alving CR et al (2020) Expert Rev Vaccines 19(3):279–292

    Article  CAS  Google Scholar 

  52. Nagavarma BVN et al (2012) Asian J pharm Clin Res 5(3):16–20

    CAS  Google Scholar 

  53. Xie Y et al (2020) Journal of American Chemical Society; Vol 142 (3), (2020), pp 1475–1481

    Google Scholar 

  54. Wei L et al (2015) Drug Discovery Today 20(5):595–596

    Article  CAS  Google Scholar 

  55. Kaur H et al (2011) Int J Biol Macromol 1:833–837

    Google Scholar 

  56. Szczech M, Szczepanowicz K (2020) Nanomaterials 10(3):496

    Google Scholar 

  57. Kakadia PG, Conway BR (2014) Am J Pharmacol Sci 2(5A):1–7

    Google Scholar 

  58. Almeida AJ et al (2007) Adv Drug Deliv Rev 59(6):478–490

    Google Scholar 

  59. Mukherjee et al (2009) Indian J Pharm Sci 71(4):349–358

    Article  CAS  Google Scholar 

  60. Yadav P et al (2014) Int J Pharm Sci Res 5(4):1152–1162

    CAS  Google Scholar 

  61. Vighi E et al (2010) Int J Pharm 389(1–2):254–261

    Article  CAS  Google Scholar 

  62. Vijayanand P et al (2018) J Drug Deliv 2018. https://doi.org/10.1155/2018/2908626

  63. Arif et al Mater Sci Eng. https://doi.org/10.1016/j.msec.2017.02.114

  64. Krishnatreyya H et al (2019) Indian J Pharm Educ Res 53(2s):82–92

    Article  CAS  Google Scholar 

  65. Müller RH, Mäder K, Gohla Sven (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  Google Scholar 

  66. Sahinwala A et al (2002) J Pharm Sci 5(3):220–225

    Google Scholar 

  67. Gharbavi M et al (2018) Adv Pharm Sci. https://doi.org/10.1155/2018/6847971

  68. Uchegbu L (2014) Synthetic surfactant vesicles: niosomes and other non-phospholilid vesicular systems. CRC Press, Boca Raton, USA

    Google Scholar 

  69. Mohite M, Kumbhar T (2019) World J Pharm Res 8(6):1303–1318

    Google Scholar 

  70. Chatterjee S, Chi-leung Hui P (2018) Stimuli-responsive hydrogels: an interdisciplinary overview. Hydrogels Smart Mater Biomed Appl. https://doi.org/10.5772/intechopen.80536

  71. Bahram M et al (2016) An introduction to hydrogels and some recent applications. https://doi.org/10.5772/64301

  72. Vashist A et al (2018) Gels 4(75):1–15. https://doi.org/10.3390/gels4030075

    Article  CAS  Google Scholar 

  73. Patel VR, Amiji MM (1996) J Pharm Res 13:588–599

    Article  CAS  Google Scholar 

  74. Torres-Martinez A et al (2019) Langmuir 35:13375–13381

    Article  CAS  Google Scholar 

  75. Wahab Amjad M, Ghafoor Raja MA (2019) J Pharm Res Int 27(11):1–7

    Google Scholar 

  76. Jaiswal M et al (2015) 3 Biotech 5:123–127. https://doi.org/10.1007/s13205-014-0214-0

  77. Chen L et al Int J Pharm https://doi.org/10.1016/j.ijpharm.2017.10.005

  78. Huihui B et al (2014) Int J Pharm 471:206–213

    Article  CAS  Google Scholar 

  79. Gaba B et al BioMed Res Int 2019. https://doi.org/10.1155/2019/2382563

  80. Sanchez-Lopez E et al (2019) Nanomaterials (Basel) 9(6):821. https://doi.org/10.3390/nano9060821

  81. Patel VR, Agarwal YK (2011) J Adv Pharm Technol Res 2(2):81–87. https://doi.org/10.4103/2231-4040.82950

  82. Goel S et al (2019) Recent Pat Drug Deliv Formul 13(2):91–104. https://doi.org/10.2174/187221131366619061415161

  83. Jacob S et al (2020) Biomater Res 24(3). https://doi.org/10.1186/s40824-020-0184-8

  84. Boedeker BH et al (1994) J Clin Pharmacol 34:699

    Google Scholar 

  85. Karan SM et al (1996) Anesth Analg 82:796

    Google Scholar 

  86. Ward G et al (1993) J Parenter Sci Technol 47:161

    Google Scholar 

  87. Ibrahim MA et al (2019) Saudi Pharm J 27(1):49–55

    Google Scholar 

Download references

Conflicts of Interest

The authors declare that there are no conflicts of interest involved in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Tiwari, S.B., Tyagi, S. (2021). Nanomaterials for Pharmaceutical Applications. In: Khan, Z.H. (eds) Emerging Trends in Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9904-0_8

Download citation

Publish with us

Policies and ethics