Skip to main content

Self-assembled Growth of GaN Nanostructures on Flexible Metal Foils by Laser Molecular Beam Epitaxy

  • Chapter
  • First Online:
Emerging Trends in Nanotechnology

Abstract

Low-dimensional semiconductor structures such as thin films, nanorods, nanowires and zero-dimensional (0-D) quantum dots or islands possess exotic electrical and optical properties compared to their bulk counterpart. Here, 1D nanorods draw a special attention due to their high aspect ratio for potential applications in the field of sensors and other nanoscale devices. Among various semiconductors, GaN having a direct wideband gap has stimulated a great deal of research interest due to the applications in the area of light-emitting diodes, solar cells, high-power electronics devices, laser diodes, ultraviolet photodetectors and water splitting, etc. Due to the advances in flexible or wearable optoelectronic devices, it is required to fabricate inorganic semiconductors hybrid devices directly on flexible substrates in near future. Here, we report the direct growth of various GaN nanostructures such as islands, thin films and nanorods on variety of flexible metal foils using laser-assisted molecular beam epitaxy (LMBE) technique and studied their structural and optical properties. Cubic and wurtzite mixed-phase GaN thin film and island structures have been obtained on the thin Cu and graphene/Cu metal foils under nitrogen-rich growth condition. Interestingly, the growth of high optical quality wurtzite GaN nanorods on bare and nitridated W foil is achieved at a low temperature of 600 °C. Vertically self-aligned GaN nanorods are successfully grown on flexible Ti metal foils at growth temperature of 650–700 °C by tuning the pre-nitridation condition of Ti foils. On the other hand, vertically well-oriented, high-density GaN nanorods have been achieved at 700 °C on bare Ta foil without any surface treatment. Raman spectroscopy, high-resolution X-ray diffraction and high-resolution transmission electron microscopy studies revealed the c-axis growth of high structural quality wurtzite GaN nanorods on these flexible metal foils. The photoluminescence spectroscopy measurements exhibit a near band edge emission around  ~3.4 eV with a full width at half maximum value of  ~100 meV for densely grown GaN nanorods. Our studies disclosed that various GaN nanostructures were grown directly on different flexible metal foils by tuning the surface treatment process by LMBE technique for developing futuristic flexible optoelectronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakamura S (1998) The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281:956

    Article  CAS  Google Scholar 

  2. Nakamura S, Mukai T, Senoh M (1994) Candela-class high-brightness InGaN/AlGaN double heterostructure blue light emitting diodes. Appl Phys Lett 64:1687

    Article  CAS  Google Scholar 

  3. Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K (1998) Continuous-wave operation of InGaN/GaN/AlGaN based laser diodes grown on GaN substrates. Appl Phys Lett 72:2014

    Article  CAS  Google Scholar 

  4. Li D, Sun X, Song H, Li Z, Chen Y, Jiang H, Miao G (2012) Realization of a High-performance GaN UV detector by nanoplasmonic enhancement. Adv Mater. 24:845

    Article  CAS  Google Scholar 

  5. Wang T, Liu YH, Lee YB, Izumi Y, Ao JP, Bai J, Li HD, Sakai S (2002) Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes. J Cryst Growth 235:177

    Article  CAS  Google Scholar 

  6. Sheu J-K, Huang F-W, Lee C-H, Lee M-L, Yeh Y-H, Chen P-C, Lai WC (2013) Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer. Appl Phys Lett 103:063906

    Article  CAS  Google Scholar 

  7. Feng MX, Liu JP, Zhang SM, Jiang DS, Li ZC, Zhou K, Li DY, Zhang LQ, Wang F, Wang H, Chen P, Liu ZS, Zhao DG, Sun Q, Yang H (2013) High efficient GaN-based laser diodes with tunnel junction. Appl Phys Lett 103:043508

    Article  CAS  Google Scholar 

  8. Ponce FA, Bour DP (1997) Nitride-based semiconductors for blue and green light-emitting devices. Nature 386:351

    Article  CAS  Google Scholar 

  9. Ryu HY, Choi WJ, Jeon KS, Kang MG, Choi Y, Lee JS (2012) Analysis of below-threshold efficiency characteristics of InGaN-based blue laser diodes. J Appl Phys 112:083109

    Article  CAS  Google Scholar 

  10. Chen P, Feng MX, Jiang DS, Zhao DG, Liu ZS, Li L, Wu LL, Le LC, Zhu JJ, Wang H, Zhang SM, Yang H (2012) Improvement of characteristics of InGaN-based laser diodes with undoped InGaN upper waveguide layer. J Appl Phys 112:113105

    Article  CAS  Google Scholar 

  11. Allen SC, Steck AJ (2008) A nearly ideal phosphor-converted white light emitting diode. Appl Phys Lett 92:143309

    Article  CAS  Google Scholar 

  12. Li D, Sun X, Song H, Li Z, Jiang H, Chen Y, Miao G, Shen B (2011) Effect of asymmetric Schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector. Appl Phys Lett 99:261102

    Article  CAS  Google Scholar 

  13. Brazzini T, Casbon MA, Sun H, Uren MJ, Lees J, Tasker PJ, Jung H, Blanck H, Kuball M (2015) Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation. Appl Phys Lett 106:213502

    Article  CAS  Google Scholar 

  14. Ramesh C, Tyagi P, Bhattacharyya B, Husale S, Maurya KK, Senthil Kumar M, Kushvaha SS (2019) Laser molecular beam epitaxy growth of porous GaN Nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetector. J Alloys Compd 770, 572

    Google Scholar 

  15. Rumyantsev SL, Pala N, Shur MS, Gaska R, Levinshtein ME, Khan MA, Simin G, Hu X, Yang J (2000) Effect of gate leakage current on noise properties of AlGaN/GaN field effect transistors. J Appl Phys 88:6726

    Article  CAS  Google Scholar 

  16. Nakamura S, Fasol G (1997) The blue laser diode—GaN based light emitters and lasers. Springer, Berlin

    Google Scholar 

  17. Shur M, Gelmont B, Khan MA (1996) Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN. J Electron Mater 25:777

    Article  CAS  Google Scholar 

  18. Harris JJ, Lee KJ, Maude DK, Portal J-C, Wang T, Sakai S (2001) Phase diagram for the quantum Hall effect in a high-mobility AlGaN/GaN heterostructures. J Phys Condens Mater 13:L175

    Google Scholar 

  19. Schmult S, Manfra MJ, Sergent AM, Punnoose A, Chou HT, Goldhaber-Gordon D, Molnar RJ (2006) Quantum transport in high mobility AlGaN/GaN 2DEGs and nanostructures. Phys Stat Sol 243:1706

    Google Scholar 

  20. Waltereit P, Bronner W, Quay R, Dammann M, Cäsar M, Müller S, Reiner R, Brückner P, Kiefer R, van Raay F, Kühn J, Musser M, Haupt C, Mikulla M, Ambacher O (2013) GaN HEMTs and MMICs for space applications. Semicond Sci Technol 28:074010

    Article  CAS  Google Scholar 

  21. Stocco A, Gerardin S, Bisi D, Dalcanale S, Rampazzo F, Meneghini M, Meneghesso G, Grünenpütt J, Lambert B, Blanck H, Zanoni E (2014) Proton induced trapping effect on space compatible GaN HEMTs. Microelectron Reliab 54:2213

    Article  CAS  Google Scholar 

  22. Porowski S, Grzegory I (1997) Thermodynamical properties of III–V nitrides and crystal growth of GaN at high N2 pressure. J Cryst Growth 178:174

    Article  CAS  Google Scholar 

  23. Kapolnek D, Wu XH, Heying B, Keller S, Keller BP, Mishra UK, DenBaars SP, Speck JS (1995) Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Appl Phys Lett. 67:1541

    Article  CAS  Google Scholar 

  24. Hageman PR, Schermer JJ, Larsen PK (2003) GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition. Thin Solid Films 443:9

    Article  CAS  Google Scholar 

  25. Zhang L, Yu J, Hao X, Wu Y, Dai Y, Shao Y, Zhang H, Tian Y (2014) Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate. Sci Rep 4:4179

    Article  CAS  Google Scholar 

  26. Yamane K, Ueno M, Furuya H, Okada N, Tadatomo K (2012) Successful natural stress-induced separation of hydride vapor phase epitaxy-grown GaN layers on sapphire substrates. J Cryst Growth 358:1

    Article  CAS  Google Scholar 

  27. Cobet C, Schmidtling T, Drago M, Wollschlager N, Esser N, Richter W (2003) Surface termination during GaN growth by metalorganic vapor phase epitaxy determined by ellipsometry. J Appl Phys 94:6997

    Article  CAS  Google Scholar 

  28. Gupta P, Rahman AA, Hatui N, Gokhale MR, Deshmukh MM, Bhattacharya A (2013) MOVPE growth of semipolar III-nitride semiconductors on CVD graphene. J Cryst Growth 372:105

    Article  CAS  Google Scholar 

  29. Kushvaha SS, Pal P, Shukla AK, Joshi AG, Gupta G, Kumar M, Singh S, Gupta BK, Haranath D (2014) Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy. AIP Adv 4:027114

    Article  CAS  Google Scholar 

  30. Koblmüller G, Chu RM, Raman A, Mishra UK, Speck JS (2010) High-temperature molecular beam epitaxial growth of AlGaN/GaN on GaN templates with reduced interface impurity levels. J Appl Phys 107:043527

    Article  CAS  Google Scholar 

  31. Kong D, Wang W, Wu X, Xie X, Liao C, Lan Z, Li G (2019) Low-temperature direct growth of GaN epitaxial film on Cu substrate with sharp and abrupt hetero-interface. Mat Lett 252:72

    Article  CAS  Google Scholar 

  32. Vispute RD, Talyansky V, Sharma RP, Choopun S, Downes M, Venkatesan T, Jones KA, Iliadis AA, Khan MA, Yang JW (1997) Growth of epitaxial GaN films by pulsed laser deposition. Appl Phys Lett 71:102

    Article  CAS  Google Scholar 

  33. Kumar MS, Kushvaha SS, Maurya KK (2014) Low temperature growth of GaN epitaxial layers on sapphire (0001) by pulsed laser deposition using liquid gallium target. Sci Adv Mater 6:1215

    Article  CAS  Google Scholar 

  34. Ying-Ying L, Jun Z, Wen-Bo L, Lan-Zhong H, Ying Z, Yan-Rong L (2011) Effect of thickness on the microstructure of GaN films on Al2O3 (0001) by laser molecular beam epitaxy. Chin Phys B 20:108102

    Article  CAS  Google Scholar 

  35. Kushvaha SS, Senthil Kumar M, Maurya KK, Dalai MK, Sharma ND (2013) Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target. AIP Adv 3:092109

    Google Scholar 

  36. Wang W, Wang H, Yang W, Zhu Y, Li G (2016) A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD. Sci Rep 6:24448

    Article  CAS  Google Scholar 

  37. Kim MH, Oshima M, Kinoshita H, Shirakura Y, Miyamura K, Ohta J, Kobayashi A, Fujioka H (2006) Investigation of the initial stage of GaN epitaxial growth on 6H-SiC (0001) at room temperature. Appl Phys Lett 89:031916

    Article  CAS  Google Scholar 

  38. Kawaguchi Y, Ohta J, Kobayashi A, Fujioka H (2005) Room-temperature epitaxial growth of GaN on lattice-matched ZrB2 substrates by pulsed-laser deposition. Appl Phys Lett 87:221907

    Article  CAS  Google Scholar 

  39. Shin H-Y, Kwon SK, Chang YI, Cho MJ, Park KH (2009) Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate. J Cryst Growth 311:4167

    Article  CAS  Google Scholar 

  40. Li G, Wang W, Yang W, Lin Y, Wang H, Lin Z, Zhou S (2016) GaN-based light-emitting diodes on various substrates: a critical review. Rep Prog Phys 79:056501

    Article  CAS  Google Scholar 

  41. Dorf RC (2004) The electrical engineering handbook series. CRC Press, Boca Raton

    Google Scholar 

  42. Lin MT, Ying SP, Lin MY, Tai KY, Chen JC (2012) High power LED package with vertical structure. Microelectron Reliab 52:878

    Article  Google Scholar 

  43. Ueda T, Ishida M, Tamura S, Fujimoto Y, Yuri M, Saito T, Ueda D (2003) Vertical InGaN-based blue light emitting diode with plated metal base fabricated using laser lift-off technique. Phys Status Solidi C 7:2219

    Article  CAS  Google Scholar 

  44. Ohta J, Fujioka H, Oshima M (2003) Room-temperature epitaxial growth of GaN on conductive substrates. Appl Phys Lett 83:3060

    Article  CAS  Google Scholar 

  45. Li G, Kim TW, Inoue S, Okamoto K, Fujioka H (2006) Epitaxial growth of single-crystalline AlN films on tungsten substrates. Appl Phys Lett 89:241905

    Article  CAS  Google Scholar 

  46. Sun H, Li X (2019) Recent advances on III-nitride nanowire light emitters on foreign substrates—toward flexible photonics. Phys Status Solidi A 216:1800420

    Google Scholar 

  47. Zhao C, Ng TK, Wei N, Prabaswara A, Alias MS, Janjua B, Chen C, Ooi BS (2016) Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light emitters. Nano Lett 16:1056

    Article  CAS  Google Scholar 

  48. Calabrese G, Corfdir P, Gao G, Pfüller C, Trampert A, Brandt O, Geelhaar L, Fernandez-Garrido S (2016) Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil. Appl Phys Lett 108:202101

    Article  CAS  Google Scholar 

  49. Ramesh C, Tyagi P, Abhiram G, Gupta G, Senthil Kumar M, Kushvaha SS (2019) Role of growth temperature on formation of single crystalline GaN nanorods on flexible titanium foil by laser molecular beam epitaxy. J Cryst Growth 509:23

    Google Scholar 

  50. Calabrese G, Pettersen SV, Pfüller C, Ramsteiner M, Grepstad JK, Brandt O, Geelhaar L, Fernandez-Garrido S (2017) Effect of surface roughness, chemical composition, and native oxide crystallinity on the orientation of self-assembled GaN nanowires on Ti foils. Nanotechnology 28:425602

    Article  CAS  Google Scholar 

  51. May BJ, Sarwar ATMG, Myers RC (2016) Nanowire LEDs grown directly on flexible metal foil. Appl Phys Lett 108:141103

    Article  CAS  Google Scholar 

  52. Li S, Waag A (2012) GaN based nanorods for solid state lighting. J Appl Phys 111:5

    Article  Google Scholar 

  53. Huang Y, Duan X, Cui Y, Lieber CM (2002) Gallium nitride nanowire nanodevices. Nano Lett 2:101

    Article  CAS  Google Scholar 

  54. Sarwar ATMG, Carnevale SD, Yang F, Kent TF, Jamison JJ, McComb DW, Myers RC (2015) Semiconductor nanowire light-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices. Small 11:5402

    Article  CAS  Google Scholar 

  55. Ramesh C, Tyagi P, Gupta G, Senthil Kumar M, Kushvaha SS (2019) Influence of surface nitridation and an AlN buffer layer on the growth of GaN nanostructures on a flexible Ti metal foil using laser molecular beam epitaxy, Jpn J Appl Phys 58:SC1032 (2019)

    Google Scholar 

  56. Li T, Liu C, Zhang Z, Yu B, Dong H, Jia W, Jia Z, Yu C, Gan L, Xu B, Jiang H (2018) Understanding the growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite. Nanoscale Res Lett 13:130

    Article  CAS  Google Scholar 

  57. Wall M (2011) The Raman spectroscopy of graphene and the determination of layer thickness. Thermo Fisher Scientific, Madison

    Google Scholar 

  58. Ramesh C, Tyagi P, Bera S, Gautam S, Subhedar KM, Kumar MS, Kushvaha SS (2020) Structural and optical properties of GaN film on copper and graphene/copper metal foils grown by laser molecular beam epitaxy. J Nanosci Nanotechnol 20:3929

    Article  CAS  Google Scholar 

  59. Dixit R, Tyagi P, Kushvaha SS, Chockalingam S, Yadav BS, Sharma ND, Kumar MS (2017) Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire. Opt Mat 66:142

    Article  CAS  Google Scholar 

  60. Wei TB, Duan RF, Wang JX, Li JM, Huo ZQ, Zeng YP (2008) Hillocks and hexagonal pits in a thick film grown by HVPE. Microelectron J 39:1556

    Article  CAS  Google Scholar 

  61. Feng ZC, Wang W, Chua SJ, Zhang PX, Williams KPJ, Pitt GD (2001) Raman scattering properties of GaN thin films grown on sapphire under visible and ultraviolet excitation. J Raman Spectrosc 32:840

    Article  CAS  Google Scholar 

  62. Kasic A, Gogova D, Larsson H, Hemmingsson C, Ivanov I, Monemar B, Bundesmann C, Schubert M (2004) Micro-Raman scattering profiling studies on HVPE-grown free-standing GaN. Phys Stat Sol 201:2773

    Google Scholar 

  63. Davydov VY, Kitaev YuE, Goncharuk IN, Smirnov AN, Graul J, Semchinova O, Uffmann D, Smirnov MB, Mirgorodsky AP, Evarestov RA (1998) Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys Rev B 58:12899

    Article  CAS  Google Scholar 

  64. Kushvaha SS, Kumar MS, Yadav BS, Tyagi PK, Ojha S, Maurya KK, Singh BP (2016) Influence of laser repetition rate on the structural and optical properties of GaN layers grown on sapphire (0001) by laser molecular beam epitaxy. CrystEngComm 18:744

    Article  CAS  Google Scholar 

  65. Tripathy S, Chua SJ, Chen P, Miao ZL (2002) Micro-Raman investigation of strain in GaN and Alx Ga1-x N/GaN heterostructures grown on Si (111). J. Appl Phys 92:3503

    Article  CAS  Google Scholar 

  66. Yu J, Hao Z, Wang J, Deng J, Yu W, Wang L, Luo Y, Han Y, Sun C, Xiong B, Li H (2019) Study on AlN buffer layer for GaN on graphene/copper sheet grown by MBE at low growth temperature. J Alloys Compd 783:633

    Article  CAS  Google Scholar 

  67. Siegle H, Eckey L, Hoffmann A, Thomsen C, Meyer BK, Schikora D, Hankeln M, Lischka K (1995) Quantitative determination of hexagonal minority phase in cubic GaN using Raman spectroscopy. Sol State Comm 96:943

    Article  CAS  Google Scholar 

  68. Sun XL, Yang H, Zheng LX, Xu DP, Li JB, Wang YT, Li GH, Wang ZG (1999) Stability investigation of cubic GaN films grown by metalorganic chemical vapor deposition on GaAs (001). Appl Phys Lett 74:2827

    Article  CAS  Google Scholar 

  69. Araki T, Uchimura S, Sakaguchi J, Nanishi Y, Fujishima T, Hsu A, Kim KK, Palacios T, Pesquera A, Centeno A, Zurutuza A (2014) Radio-frequency plasma-excited molecular beam epitaxy growth of GaN on graphene/Si (100) substrates. Appl Phys Exp 7:071001

    Article  CAS  Google Scholar 

  70. Strite S, Morkoc H (1992) GaN, AlN, and InN: a review. J Vac Sci Technol B 10:1237

    Article  CAS  Google Scholar 

  71. Grieshaber W, Schubert EF, Goepfert ID, Karlicek RF Jr, Schurman MJ, Tran C (1996) Competition between band gap and yellow luminescence in GaN and its relevance for optoelectronic devices. J Appl Phys 80:4615

    Article  CAS  Google Scholar 

  72. Saarinen K, Laine T, Kuisma S, Nissila J, Hautojarvi P, Dobrzynski L, Baranowski JM, Pakula K, Stepniewski R, Wojdak M, Wysmolek A, Suski T, Leszczynski M, Grzegory I, Porowski S (1997) Observation of native Ga vacancies in GaN by positron annihilation. Phys Rev Lett 79:3030

    Article  CAS  Google Scholar 

  73. Santana G, de Melo O, Aguilar-Hernández J, Mendoza-Pérez R, Monroy BM, Escamilla-Esquivel A, López-López M, de Moure F, Hernández LA, Contreras-Puente G (2013) Photoluminescence study of gallium nitride thin films obtained by infrared close space vapor transport. Mater 6:1050

    Google Scholar 

  74. Heying B, Averbeck R, Chen LF, Haus E, Riechert H, Speck JS (2000) Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. J. Appl. Phys. 88:1855

    Article  CAS  Google Scholar 

  75. Tarsa EJ, Heying B, Wu XH, Fini P, DenBaars SP, Speck JS (1997) Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82:5472

    Article  CAS  Google Scholar 

  76. Kushvaha SS, Kumar MS, Shukla AK, Yadav BS, Singh DK, Jewariya M, Ragam SR, Maurya KK (2015) Structural, optical and electronic properties of homoepitaxial GaN nanowalls grown on GaN template by laser molecular beam epitaxy. RSC Adv. 5:87818

    Article  CAS  Google Scholar 

  77. Consonni V (2013) Self-induced growth of GaN nanowires by molecular beam epitaxy: A critical review of the formation mechanisms. Phys. Status Solidi RRL 7:699

    Article  CAS  Google Scholar 

  78. Li H, Geelhaar L, Riechert H, Draxl C (2015) Computing Equilibrium Shapes of Wurtzite Crystals: The Example of GaN. Phys. Rev. Lett. 115:085503

    Article  CAS  Google Scholar 

  79. Ramesh C, Tyagi P, Mauraya A, Kumar MS, Kushvaha SS (2019) Structural and optical properties of low temperature grown single crystalline GaN nanorods on flexible tungsten foils using laser molecular beam epitaxy. Mater. Res. Exp. 6:085919

    Article  CAS  Google Scholar 

  80. Consonni V, Dubrovskii VG, Trampert A, Geelhaar L, Riechert H (2012) Quantitative description for the growth rate of self-induced GaN nanowires. Phys. Rev. B 85:155313

    Article  CAS  Google Scholar 

  81. Ra YH, Navamathavan R, Lee YM, Kim DW, Kim JS, Lee IH, Lee CR (2010) The influence of the working pressure on the synthesis of GaN nanowires by using MOCVD. J. Cryst. Growth 312:770

    Article  CAS  Google Scholar 

  82. Reshchikov MA, Korotkov RY (2001) Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films. Phys. Rev. B 64:115205

    Article  CAS  Google Scholar 

  83. Liao H, Li J, Wei T, Wen P, Li M, Hu X (2019) First-principles study of CN point defects on sidewall surface of [0 0 0 1]-oriented GaN nanowires. Appl. Surf. Sci. 467:293

    Article  CAS  Google Scholar 

  84. Fernandez-Garrido S, Kong X, Gotschke T, Calarco R, Geelhaar L, Trampert A, Brandt O (2012) Spontaneous Nucleation and Growth of GaN Nanowires: The Fundamental Role of Crystal Polarity. Nano Lett. 12:6119

    Article  CAS  Google Scholar 

  85. Gorczyca I, Christensen NE, Svane A (2002) Influence of hydrostatic pressure on cation vacancies in GaN, AlN, and GaAs. Phys. Rev. B 66:075210

    Article  CAS  Google Scholar 

  86. Tyagi P, Ramesh C, Kaswan J, Dhua S, John S, Shukla AK, Roy SC, Kushvaha SS, Muthusamy SK (2019) Direct growth of self-aligned single-crystalline GaN nanorod array on flexible Ta foil for photocatalytic solar water splitting. J. Alloys Compd. 805:97

    Article  CAS  Google Scholar 

  87. Ramesh C, Tyagi P, Kaswan J, Yadav BS, Shukal AK, Kumar MS, Kushvaha SS (2020) Effect of surface modification and laser repetition rate on growth, structural, electronic and optical properties of GaN nanorods on flexible metal foil. RSC Adv. 10:2113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the director, NPL, for the constant encouragement and support. The authors are also grateful to Dr. N.D. Sharma, Dr. G. Gupta, Dr. K. Subhedar and Dr. M. Kaur of CSIR-NPL, Dr. B. S. Yadav of SSPL, New Delhi, and Dr. S. Ojha of IUAC, New Delhi, for their help in different sample characterizations. Authors would like to acknowledge the group members Mr. C. Ramesh and Mr. P. Tyagi for their contribution in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kushvaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kushvaha, S.S., Senthil Kumar, M. (2021). Self-assembled Growth of GaN Nanostructures on Flexible Metal Foils by Laser Molecular Beam Epitaxy. In: Khan, Z.H. (eds) Emerging Trends in Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9904-0_5

Download citation

Publish with us

Policies and ethics