Skip to main content

Remote Patient Monitoring: Health Status Detection and Prediction in IoT-Based Health Care

Part of the Studies in Computational Intelligence book series (SCI,volume 933)

Abstract

Internet of Things (IoT) has changed the lives of millions of people and improves the quality of human beings. This architecture is used for several parts of life including health care, transportation, and building. Moreover, IoT aims to remove human intervention in the decision and decrease the involvement of operators. Healthcare systems are very important since they have a direct effect on people’s life. Health status prediction is one of the achievements of IoT-based healthcare systems. These systems employ body sensors like electrocardiography (ECG), electroencephalogram (EEG), temperature, and blood pressure. They also employ environmental sensors to detect the behaviors of the patients which helps to improve the accuracy of health status prediction. In this chapter, we want to emphasize on IoT-based healthcare monitoring system that aids in health status prediction. Cloud computing and edge computing are employed to communicate between different healthcare subsystems. Edge computing is a distributed computing paradigm which brings computation and data storage closer to the location where it is needed, to improve response times and save bandwidth. Furthermore, edge computing-based healthcare systems are more efficient as the computing is done in nearer places to patients. Consequently, the health status prediction is done in real time which is critical in healthcare systems. This chapter presents IoT-based healthcare technologies and methods that are applied in order to detect or predict the patient health status.

Keywords

  • Health status prediction
  • IoT
  • Health care
  • Monitoring
  • Body sensors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-9897-5_5
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-9897-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bloom, D.E., Canning, D., Lubet, A.: Global population aging: facts, challenges, solutions and perspectives. Daedalus 144(2), 80–92 (2015)

    CrossRef  Google Scholar 

  2. Organization, W.H.: WHO. 10 facts on ageing and health (2017)

    Google Scholar 

  3. Le Deist, F., Latouille, M.: Acceptability conditions for telemonitoring gerontechnology in the elderly: optimising the development and use of this new technology. IRBM 37(5–6), 284–288 (2016)

    CrossRef  Google Scholar 

  4. Kortum, P., Sorber, M.: Measuring the usability of mobile applications for phones and tablets. Int. J. Human-Comput. Interact. 31(8), 518–529 (2015)

    CrossRef  Google Scholar 

  5. Gazis, V. et al.: (2012) Wireless sensor networking, automation technologies and machine to machine developments on the path to the Internet of Things. In: 2012 16th Panhellenic Conference on Informatics. IEEE

    Google Scholar 

  6. Shahamabadi, M.S. et al.: (2013) A network mobility solution based on 6LoWPAN hospital wireless sensor network (NEMO-HWSN). In: 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE

    Google Scholar 

  7. Zamanifar, A., Nazemi, E.: An Approach for Predicting Health Status in IoT Health Care. Elsevier (2019)

    Google Scholar 

  8. Gubbi, J., et al.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    CrossRef  Google Scholar 

  9. Zamanifar, A.: Wireless sensor networks-IoT infrastructure. In: New Advances in the Internet of Things. Springer, pp 165–178 (2018)

    Google Scholar 

  10. Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015)

    CrossRef  Google Scholar 

  11. Yeh, K.-H.: A secure IoT-based healthcare system with body sensor networks. IEEE Access 4, 10288–10299 (2016)

    CrossRef  Google Scholar 

  12. Elhoseny, M., et al.: Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 6, 20596–20608 (2018)

    CrossRef  Google Scholar 

  13. Shi, W., et al.: Edge computing: vision and challenges. IEEE Internet Things J 3(5), 637–646 (2016)

    CrossRef  Google Scholar 

  14. Kulkarni, P., Öztürk, Y.: Requirements and design spaces of mobile medical care. ACM SIGMOBILE Mob. Comput. Commun. Rev. 11(3), 12–30 (2007)

    CrossRef  Google Scholar 

  15. Zamanifar, A., Nazemi, E., Vahidi-Asl, M.: DSHMP-IOT: a distributed self healing movement prediction scheme for internet of things applications. Appl. Intell. 46(3), 569–589 (2017)

    CrossRef  Google Scholar 

  16. Zamanifar, A., Nazemi, E., Vahidi-Asl, M.: DMP-IOT: a distributed movement prediction scheme for IOT health-care applications. Comput. Electr. Eng. 58, 310–326 (2017)

    CrossRef  Google Scholar 

  17. Zamanifar, A., Nazemi, E.: EECASC: an energy efficient communication approach in smart cities. Wirel. Netw. 26(2), 925–940 (2020)

    CrossRef  Google Scholar 

  18. Zamanifar, A., Nazemi, E., Vahidi-Asl, M.: A mobility solution for hazardous areas based on 6LoWPAN. Mob. Netw. Appl. 23(6), 1539–1554 (2018)

    CrossRef  Google Scholar 

  19. Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: a survey. Comput. Netw. 54(15), 2688–2710 (2010)

    CrossRef  Google Scholar 

  20. Yassine, A., et al.: IoT big data analytics for smart homes with fog and cloud computing. Future Gener. Comput. Syst. 91, 563–573 (2019)

    CrossRef  Google Scholar 

  21. Jiang, L., et al.: An IoT-oriented data storage framework in cloud computing platform. IEEE Trans. Industr. Inf. 10(2), 1443–1451 (2014)

    CrossRef  Google Scholar 

  22. Xu, B., et al.: Ubiquitous data accessing method in IoT-based information system for emergency medical services. IEEE Trans. Industr. Inf. 10(2), 1578–1586 (2014)

    CrossRef  Google Scholar 

  23. AC, I.: IoT semantic interoperability: research challenges, best practices, solutions and next steps (2013)

    Google Scholar 

  24. Nair, L.R., Shetty, S.D., Shetty, S.D.: Applying spark based machine learning model on streaming big data for health status prediction. Comput. Electr. Eng. 65, 393–399 (2018)

    CrossRef  Google Scholar 

  25. Ed-daoudy, A., Maalmi, K.: A new Internet of Things architecture for real-time prediction of various diseases using machine learning on big data environment. J. Big Data 6(1), 104 (2019)

    Google Scholar 

  26. Dohr, A. et al.: The Internet of Things for ambient assisted living. In: 2010 Seventh International Conference on Information Technology: New Generations. IEEE (2010)

    Google Scholar 

  27. Rajasekar, M.R.: Cloud-centric IoT based disease diagnosis in smart e-health prediction system. J. Gujarat Res. Soc. 21(16), 2214–2220 (2019)

    Google Scholar 

  28. Pinto, S., Cabral, J., Gomes, T.: We-care: an IoT-based health care system for elderly people. In: 2017 IEEE International Conference on Industrial Technology (ICIT). IEEE (2017)

    Google Scholar 

  29. Tyagi, S., Agarwal, A., Maheshwari, P. A conceptual framework for IoT-based healthcare system using cloud computing. In: 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence). IEEE (2016)

    Google Scholar 

  30. Verma, P., Sood, S.K., Kalra, S.: Cloud-centric IoT based student healthcare monitoring framework. J. Ambient Intell. Humaniz. Comput. 9(5), 1293–1309 (2018)

    CrossRef  Google Scholar 

  31. Cunningham, P., Delany, S.J. k-Nearest Neighbour Classifiers. arXiv preprint arXiv:2004.04523 (2020)

  32. Cheng, J., Greiner, R.: Learning bayesian belief network classifiers: algorithms and system. In: Conference of the Canadian Society for Computational Studies of Intelligence. Springer (2001)

    Google Scholar 

  33. Neyja, M. et al.: An IoT-based e-health monitoring system using ECG signal. In: GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE (2017)

    Google Scholar 

  34. Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  35. Sahoo, P.K., Mohapatra, S.K., Wu, S.-L.: Analyzing healthcare big data with prediction for future health condition. IEEE Access 4, 9786–9799 (2016)

    CrossRef  Google Scholar 

  36. ElSaadany, Y., Majumder, A.J.A., Ucci, D.R.: A wireless early prediction system of cardiac arrest through IoT. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). IEEE (2017)

    Google Scholar 

  37. Gayathri, K., Elias, S., Ravindran, B.: Hierarchical activity recognition for dementia care using Markov logic network. Pers. Ubiquit. Comput. 19(2), 271–285 (2015)

    CrossRef  Google Scholar 

  38. Gope, P., Hwang, T.: BSN-care: a secure IoT-based modern healthcare system using body sensor network. IEEE Sens. J. 16(5), 1368–1376 (2015)

    CrossRef  Google Scholar 

  39. Chiuchisan, I., Costin, H.-N., Geman, O.: Adopting the Internet of Things technologies in health care systems. In: 2014 International Conference and Exposition on Electrical and Power Engineering (EPE). IEEE (2014)

    Google Scholar 

  40. Mutlag, A.A., et al.: Enabling technologies for fog computing in healthcare IoT systems. Future Gener. Comput. Syst. 90, 62–78 (2019)

    CrossRef  Google Scholar 

  41. Bonomi, F. et al.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (2012)

    Google Scholar 

  42. Khan, W.Z., et al.: Edge computing: a survey. Future Gener. Comput. Syst. 97, 219–235 (2019)

    CrossRef  Google Scholar 

  43. Rahmani, A.M., et al.: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Future Gener. Comput. Syst. 78, 641–658 (2018)

    CrossRef  Google Scholar 

  44. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). IEEE (2008)

    Google Scholar 

  45. Bhatia, M., Sood, S.K.: A comprehensive health assessment framework to facilitate IoT-assisted smart workouts: a predictive healthcare perspective. Comput. Ind. 92, 50–66 (2017)

    CrossRef  Google Scholar 

  46. Tuli, S., et al.: HealthFog: an ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments. Future Gener. Comput. Syst. 104, 187–200 (2020)

    CrossRef  Google Scholar 

  47. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

    CrossRef  Google Scholar 

  48. Chen, L. et al.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 42(6), 790–808 (2012)

    Google Scholar 

  49. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing. Springer (2004)

    Google Scholar 

  50. Kelly, D., et al.: A multimodal smartphone sensor system for behaviour measurement and health status inference. Inform. Fusion 53, 43–54 (2020)

    CrossRef  Google Scholar 

  51. Jung, Y., Yoon, Y.I.: Wellness contents recommendation based on human emotional and health status using em. In: 2015 Seventh International Conference on Ubiquitous and Future Networks. IEEE (2015)

    Google Scholar 

  52. Jung, Y., Yoon, Y.I.: Monitoring senior wellness status using multimodal biosensors. In: 2016 International Conference on Big Data and Smart Computing (BigComp). IEEE (2016)

    Google Scholar 

  53. Qi, J., et al.: Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: a systematic review. J. Biomed. Inform. 87, 138–153 (2018)

    CrossRef  Google Scholar 

  54. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    CrossRef  Google Scholar 

  55. Juang, B.H., Rabiner, L.R.: Hidden Markov models for speech recognition. Technometrics 33(3), 251–272 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Zamanifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Zamanifar, A. (2021). Remote Patient Monitoring: Health Status Detection and Prediction in IoT-Based Health Care. In: Marques, G., Bhoi, A.K., Albuquerque, V.H.C.d., K.S., H. (eds) IoT in Healthcare and Ambient Assisted Living. Studies in Computational Intelligence, vol 933. Springer, Singapore. https://doi.org/10.1007/978-981-15-9897-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9897-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9896-8

  • Online ISBN: 978-981-15-9897-5

  • eBook Packages: EngineeringEngineering (R0)