Skip to main content

Micro-Abrasive Wear Behavior Study of an Intermetallic Material—Fe–30Al–6Cr (at.%) Under Conditions of Room and Moderate Temperatures: A Comparison

  • Conference paper
  • First Online:
Proceedings of the 8th International Conference on Fracture, Fatigue and Wear (FFW 2020 2020)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 773 Accesses

Abstract

Present work focus on research of tribological resistance of an intermetallic material (Fe–30Al–6Cr—at.%), seeking correlations between wear volume, friction coefficient and temperature. Abrasive experiments were performed with specimens of an iron aluminide alloy against AISI 52100 steel ball and abrasive particles of silicon carbide in glycerin. An individual study was done with respect to their characteristics in terms of SEM-EDS analysis. Different test conditions were defined and the abrasive slurry was, continuously, supplied between the specimen and the ball. Values of tangential force and normal force were acquired simultaneously, for “ballabrasive particlesspecimen” tribological system. Systematic studies of the occurrences of the micro-abrasive wear modes, friction and wear generated during tests were done. Moderate temperature favored a larger degree of plastic deformation than removal of material, reducing the wear rate and decreasing glycerin viscosity, which facilitated the movement of the abrasive particles and, consequently, reduced the friction coefficient. Wear volume presented a rising behavior with increase in sliding distance at room and moderate temperatures. Present research explored the potential of an intermetallic material as structural material subjected to moderate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris DG, Morris-Muñoz MA (1999) The influence of microstructure on the ductility of iron aluminides. Intermetallics 7(10):1121–1129. https://doi.org/10.1016/S0966-9795(99)00038-2

    Article  Google Scholar 

  2. Risanti DD, Sauthoff G (2011) Microstructures and mechanical properties of Fe-Al-Ta alloys with strengthening Laves phase. Intermetallics 19(11):1727–1736. https://doi.org/10.1016/j.intermet.2011.07.008

    Article  Google Scholar 

  3. Hanus P, Bartsch E, Palm M, Krein R, Bauer-Partenheimer K, Janschek P (2010) Mechanical properties of a forged Fe-25Al-2Ta steam turbine blade. Intermetallics 18(7):1379–1384. https://doi.org/10.1016/j.intermet.2009.12.035

    Article  Google Scholar 

  4. Wu D, Baker I, Munroe PR, George EP (2007) The yield strength anomaly of single-slip-oriented Fe-Al single crystals. Intermetallics 15(2):103–107. https://doi.org/10.1016/j.intermet.2006.03.007

    Article  Google Scholar 

  5. Krein R, Schneider A, Sauthoff G, Frommeyer G (2007) Microstructure and mechanical properties of Fe3Al-based alloys with strengthening boride precipitates. Intermetallics 15(9):1172–1182. https://doi.org/10.1016/j.intermet.2007.02.005

    Article  Google Scholar 

  6. Herrmann J, Inden G, Sauthoff G (2003) Deformation behavior of iron-rich iron-aluminium alloys at high temperatures. Acta Mater 51(11):3233–3242. https://doi.org/10.1016/S1359-6454(03)00144-7

    Article  Google Scholar 

  7. Borges DFL, Espinosa DCR, Schön CG (2014) Making iron aluminides out of scrap. J Mater Res Technol 3(2):101–106. https://doi.org/10.1016/j.jmrt.2013.12.002

    Article  Google Scholar 

  8. Borges DFL (2010) Processing and characterization of iron aluminides made from recycled raw materials (master’s thesis, Polytechnic School of the University of São Paulo, São Paulo—SP, Brazil, 2010). Available online: http://www.teses.usp.br/teses/disponiveis/3/3133/tde-25102011-122243/pt-br.php

  9. Guan X, Iwasaki K, Kishi K, Yamamoto M, Tanaka R (2004) Dry sliding wear behavior of Fe-28Al and Fe-28Al-10Ti alloys. Mater Sci Eng A 366(1):127–134. https://doi.org/10.1016/j.msea.2003.09.049

    Article  Google Scholar 

  10. Zhang X, Ma J, Fu L, Zhu S, Li F, Yang J, Liu W (2013) High temperature wear resistance of Fe-28Al-5Cr alloy and its composites reinforced by TiC. Tribol Int 61:48–55. https://doi.org/10.1016/j.triboint.2012.12.005

    Article  Google Scholar 

  11. Sharma G, Limaye PK, Ramanujan RV, Sundararaman M, Prabhu N (2004) Dry-sliding wear studies of Fe3Al-ordered intermetallic alloy. Mater Sci Eng, A 386(1–2):408–414. https://doi.org/10.1016/j.msea.2004.07.053

    Article  Google Scholar 

  12. Rutherford KL, Hutchings IM (1997) Theory and application of a micro-scale abrasive wear test. J Test Eval JTEVA 25(2):250–260. doi.org/doi.org/10.1520/JTE11487J

    Google Scholar 

  13. Cozza RC, Tanaka DK, Souza RM (2009) Friction coefficient and abrasive wear modes in ball-cratering tests conducted at constant normal force and constant pressure—preliminary results. Wear 267(1–4):61–70. https://doi.org/10.1016/j.wear.2009.01.055

    Article  Google Scholar 

  14. Sapate SG, Selokar A, Garg N (2010) Experimental investigation of hardfaced martensitic steel under slurry abrasion conditions. Mater Des 31(8):4001–4006. https://doi.org/10.1016/j.matdes.2010.03.009

    Article  Google Scholar 

  15. Itoi T, Mineta S, Kimura H, Yoshimi K, Hirohashi M (2010) Fabrication and wear properties of Fe3Al-based composites. Intermetallics 18(11):2169–2177. https://doi.org/10.1016/j.intermet.2010.07.014

    Article  Google Scholar 

  16. Jóźwiak S, Karczewski K (2009) Influence of aluminum oxides on abrasive wear resistance of Fe-50 at.% Al intermetallics sinters. J Alloy Compd 482(1–2):405–411. https://doi.org/10.1016/j.jallcom.2009.04.034

  17. Malafaia AMS, Milan MT, Omar M, Muñoz Riofano RM, de Oliveira MF (2010) Oxidation and abrasive wear of Fe-Si and Fe-Al intermetallic alloys. J Mater Sci 45(19):5393–5397. https://doi.org/10.1007/s10853-010-4591-4

  18. Johnson M, Mikkola DE, March PA, Wright RN (1990) The resistance of nickel and iron aluminides to cavitation erosion and abrasive wear. Wear 140(2):279–289. https://doi.org/10.1016/0043-1648(90)90090-W

    Article  Google Scholar 

  19. Ahmadian M, Wexler D, Chandra T, Calka A (2005) Abrasive wear of WC-FeAl-B and WC-Ni3Al-B composites. Int J Refract Metal Hard Mater 23(3):155–159. https://doi.org/10.1016/j.ijrmhm.2004.12.002

    Article  Google Scholar 

  20. Mosbah AY, Wexler D, Calka A (2005) Abrasive wear of WC-FeAl composites. Wear 258(9):1337–1341. https://doi.org/10.1016/j.wear.2004.09.061

    Article  Google Scholar 

  21. Alman DE, Hawk JA, Tylczak JH, Doğan CP, Wilson RD (2001) Wear of iron-aluminide intermetallic-based alloys and composites by hard particles. Wear 251(1–12):875–884. https://doi.org/10.1016/S0043-1648(01)00745-1

    Article  Google Scholar 

  22. Hawk JA, Alman DE (1997) Abrasive wear of intermetallic-based alloys and composites. Mater Sci Eng, A 239–240:899–906. https://doi.org/10.1016/S0921-5093(97)00681-3

    Article  Google Scholar 

  23. Maupin HE, Wilson RD, Hawk JA (1992) An abrasive wear study of ordered Fe3Al. Wear 159(2):241–247. https://doi.org/10.1016/0043-1648(92)90307-T

    Article  Google Scholar 

  24. Aoki K (1990) Ductilization of L12 intermetallic compound Ni3Al by microalloying with boron: materials transactions. JIM 31(6):443–448. https://doi.org/10.2320/matertrans1989.31.443

  25. Deevi SC, Sikka VK (1996) Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics 4(5):357–375. https://doi.org/10.1016/0966-9795(95)00056-9

    Article  Google Scholar 

  26. Morris DG (1998) Possibilities for high-temperature strengthening in iron aluminides. Intermetallics 6(7–8):753–758. https://doi.org/10.1016/S0966-9795(98)00028-4

    Article  Google Scholar 

  27. Schneibel JH, George EP, Anderson IM (1997) Tensile ductility, slow crack growth, and fracture mode of ternary B2 iron aluminides at room temperature. Intermetallics 5(3):185–193. https://doi.org/10.1016/S0966-9795(96)00087-8

    Article  Google Scholar 

  28. Dobeš F, Milička K (2010) Estimation of ductility of Fe-Al alloys by means of small punch test. Intermetallics 18(7):1357–1359. https://doi.org/10.1016/j.intermet.2009.11.002

    Article  Google Scholar 

  29. Stein F, Schneider A, Frommeyer G (2003) Flow stress anomaly and order-disorder transitions in Fe3Al-based Fe-Al-Ti-X alloys with X = V, Cr, Nb, or Mo. Intermetallics 11(1):71–82. https://doi.org/10.1016/S0966-9795(02)00187-5

    Article  Google Scholar 

  30. Morris DG, Chao J, Garcia Oca C, Muñoz-Morris MA (2003) Obtaining good ductility in an FeAl intermetallic. Mater Sci Eng A 339(1–2):232–240. https://doi.org/10.1016/S0921-5093(02)00108-9

    Article  Google Scholar 

  31. Bystrzycki J, Fraczkiewicz A, Łyszkowski R, Mondon M, Pakiela Z (2010) Microstructure and tensile behavior of Fe-16Al-based alloy after severe plastic deformation. Intermetallics 18(7):1338–1343. https://doi.org/10.1016/j.intermet.2010.01.014

    Article  Google Scholar 

  32. Cozza RC (2013) A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests. Surf Coat Technol 215:224–233. https://doi.org/10.1016/j.surfcoat.2012.06.088

    Article  Google Scholar 

  33. Cozza RC, Tanaka DK, Souza RM (2011) Friction coefficient and wear mode transition in micro-scale abrasion tests. Tribol Int 44(12):1878–1889. https://doi.org/10.1016/j.triboint.2011.08.006

    Article  Google Scholar 

  34. Cozza RC (2014) Influence of the normal force, abrasive slurry concentration and abrasive wear modes on the coefficient of friction in ball-cratering wear tests. Tribol Int 70:52–62. https://doi.org/10.1016/j.triboint.2013.09.010

    Article  Google Scholar 

  35. Adachi K, Hutchings IM (2003) Wear-mode mapping for the micro-scale abrasion test. Wear 255(1–6):23–29. https://doi.org/10.1016/S0043-1648(03)00073-5

    Article  Google Scholar 

  36. Adachi K, Hutchings IM (2005) Sensitivity of wear rates in the micro-scale abrasion test to test conditions and material hardness. Wear 258(1–4):318–321. https://doi.org/10.1016/j.wear.2004.02.016

    Article  Google Scholar 

  37. Trezona RI, Allsopp DN, Hutchings IM (1999) Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test. Wear 225–229:205–214. https://doi.org/10.1016/S0043-1648(98)00358-5

    Article  Google Scholar 

  38. Mergler YJ, in’t Veld AH (2003) Micro-abrasive wear of semi-crystalline polymers. Tribol Res Des Eng Syst 41:165–173. https://doi.org/10.1016/S0167-8922(03)80129-3

    Article  Google Scholar 

  39. Umemura MT, Varela LB, Pinedo CE, Cozza RC, Tschiptschin AP (2019) Assessment of tribological properties of plasma nitrided 410S ferritic-martensitic stainless steels. Wear 426–427:49–58. https://doi.org/10.1016/j.wear.2018.12.092

    Article  Google Scholar 

  40. Allsopp DN, Hutchings IM (2001) Micro-scale abrasion and scratch response of PVD coatings at elevated temperatures. Wear 251(1–12):1308–1314. https://doi.org/10.1016/S0043-1648(01)00755-4

    Article  Google Scholar 

  41. Bose K, Wood RJK (2005) Optimum tests conditions for attaining uniform rolling abrasion in ball cratering tests on hard coatings. Wear 258(1–4):322–332. https://doi.org/10.1016/j.wear.2004.09.018

    Article  Google Scholar 

  42. Axén N, Jacobson S, Hogmark S (1994) Influence of hardness of the counterbody in three-body abrasive wear—an overlooked hardness effect. Tribol Int 27(4):233–241. https://doi.org/10.1016/0301-679X(94)90003-5

    Article  Google Scholar 

  43. Fang L, Liu W, Du D, Zhang X, Xue Q (2004) Predicting three-body abrasive wear using Monte Carlo methods. Wear 256(7–8):685–694. https://doi.org/10.1016/S0043-1648(03)00464-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Câmara Cozza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, E.K.T.M., Luna-Domínguez, J.H., Verma, V., Cozza, R.C. (2021). Micro-Abrasive Wear Behavior Study of an Intermetallic Material—Fe–30Al–6Cr (at.%) Under Conditions of Room and Moderate Temperatures: A Comparison. In: Abdel Wahab, M. (eds) Proceedings of the 8th International Conference on Fracture, Fatigue and Wear . FFW 2020 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9893-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9893-7_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9892-0

  • Online ISBN: 978-981-15-9893-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics