Skip to main content

An Overview of Crossover Techniques in Genetic Algorithm

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 206)

Abstract

Artificial Genetic Algorithm is proposed to mimic the natural selection process. It provides an elegant and relatively simple way to solve non-polynomial problems. The crossover, one of the basic step of GA, is an imitation of reproduction in biological beings. Crossover exchanges information between different individuals to generate offspring with the hope of obtaining better genes. The basic aim of crossover is the same, but various approaches are proposed depending on the problem. This paper presents a review on the crossover, basics and some problem-specific techniques.

Keywords

  • GA
  • Genes
  • Chromosomes
  • Crossover
  • Optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumbharana, N., Pandey, G.M.: A comparative study of aco, ga and sa for solving travelling salesman problem. Int. J. Soc. Appl. Comput. Sci. 2(2), 224–228 (2013)

    Google Scholar 

  2. Yuan, S., Skinner, B., Huang, S., Liu, D.: A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms. Eur. J. Oper. Res. 228(1), 72–82 (2013)

    CrossRef  MathSciNet  Google Scholar 

  3. Nakano, R., Yamada, T.: Conventional genetic algorithm for job shop problems. ICGA 91, 474–479 (1991)

    Google Scholar 

  4. Arifovic, J.: Genetic algorithm learning and the cobweb model. J. Econom. Dynam. Control 18(1), 3–28 (1994)

    CrossRef  Google Scholar 

  5. Jin-Yu, Z., Yan, C., Xian-Xiang, H.: Edge detection of images based on improved sobel operator and genetic algorithms. In: 2009 International Conference on Image Analysis and Signal Processing, pp. 31–35. IEEE (2009)

    Google Scholar 

  6. Hasançebi, O., Erbatur, F.: Evaluation of crossover techniques in genetic algorithm based optimum structural design. Comput. Struct. 78(1–3), 435–448 (2000)

    CrossRef  Google Scholar 

  7. Sutar, S.R., Bichkar, R.S.: University timetabling based on hard constraints using genetic algorithm. Int. J. Comput. Appl. 42(15), 3–5 (2012)

    Google Scholar 

  8. Kadri, R.L., Boctor, F.F.: An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: the single mode case. Eur. J. Oper. Res. 265(2), 454–462 (2018)

    CrossRef  MathSciNet  Google Scholar 

  9. Rajesh, K., Visali, N., Sreenivasulu, N.: Optimal load scheduling of thermal power plants by genetic algorithm. In: Emerging Trends in Electrical, Communications, and Information Technologies, pp. 397–409, Springer (2020)

    Google Scholar 

  10. Lin, Y.-K., Chong, C.S.: Fast ga-based project scheduling for computing resources allocation in a cloud manufacturing system. J. Intell. Manufact. 28(5), 1189–1201 (2017)

    CrossRef  MathSciNet  Google Scholar 

  11. Xiao, Y., Konak, A.: A genetic algorithm with exact dynamic programming for the green vehicle routing and scheduling problem. Journal of Cleaner Production 167, 1450–1463 (2017)

    CrossRef  Google Scholar 

  12. Roeva, O., Fidanova, S., Paprzycki, M.: Population size influence on the genetic and ant algorithms performance in case of cultivation process modeling. In: Recent Advances in Computational Optimization, pp. 107–120, Springer (2015)

    Google Scholar 

  13. Shukla, A., Pandey, H.M., Mehrotra, D.: Comparative review of selection techniques in genetic algorithm. In: 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), pp. 515–519, IEEE (2015)

    Google Scholar 

  14. Haupt, R.L.: Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. In: IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C), vol. 2, pp. 1034–1037, IEEE (2000)

    Google Scholar 

  15. Safe, M., Carballido, J., Ponzoni, I., Brignole, N.: On stopping criteria for genetic algorithms. In: Brazilian Symposium on Artificial Intelligence, pp. 405–413, Springer (2004)

    Google Scholar 

  16. Murata, T., Ishibuchi, H.: Performance evaluation of genetic algorithms for flowshop scheduling problems. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 812–817, IEEE (1994)

    Google Scholar 

  17. Michalewicz, Z., Nazhiyath, G., Michalewicz, M.: A note on usefulness of geometrical crossover for numerical optimization problems. Evol. Program. 5(1), 305–312 (1996)

    Google Scholar 

  18. Wright, A.H.: Genetic algorithms for real parameter optimization. In: Foundations of Genetic Algorithms, vol. 1, pp. 205–218, Elsevier (1991)

    Google Scholar 

  19. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Foundations of Genetic Algorithms, vol. 2, pp. 187–202, Elsevier (1993)

    Google Scholar 

  20. Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 188(1), 895–911 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Bort, E., Franceschini, G., Massa, A., Rocca, P.: Improving the effectiveness of ga-based approaches to microwave imaging through an innovative parabolic crossover. IEEE Antennas Wireless Propag. Lett. 4, 138–142 (2005)

    CrossRef  Google Scholar 

  22. Moscato, P., et al.: On genetic crossover operators for relative order preservation. C3P Report, vol. 778 (1989)

    Google Scholar 

  23. Goldberg, D.E., Lingle, R., et al.: Alleles, loci, and the traveling salesman problem. In: Proceedings of an International Conference on Genetic Algorithms and their Applications, vol. 154, pp. 154–159, Lawrence Erlbaum, Hillsdale, NJ (1985)

    Google Scholar 

  24. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the traveling salesman problem. In: ICGA (1987)

    Google Scholar 

  25. Whitley, L.D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling salesmen: the genetic edge recombination operator. ICGA 89, 133–40 (1989)

    Google Scholar 

  26. Ahmed, Z.H.: Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator. Int. J. Biometrics Bioinform. (IJBB) 3(6), 96 (2010)

    Google Scholar 

  27. Arram, A., Ayob, M.: A novel multi-parent order crossover in genetic algorithm for combinatorial optimization problems. Comput. Ind. Eng. 133, 267–274 (2019)

    CrossRef  Google Scholar 

  28. Gen, M., Choi, J., Ida, K.: Improved genetic algorithm for generalized transportation problem. Artif. Life Rob. 4(2), 96–102 (2000)

    CrossRef  Google Scholar 

  29. Fatyanosa, T.N., Bachtiar, F.A., Data, M.: Feature selection using variable length chromosome genetic algorithm for sentiment analysis. In: 2018 International Conference on Sustainable Information Engineering and Technology (SIET), pp. 27–32. IEEE (2018)

    Google Scholar 

  30. Qiongbing, Z., Lixin, D.: A new crossover mechanism for genetic algorithms with variable-length chromosomes for path optimization problems. Expert Syst. Appl. 60, 183–189 (2016)

    CrossRef  Google Scholar 

  31. Anand, E., Panneerselvam, R.: A study of crossover operators for genetic algorithm and proposal of a new crossover operator to solve open shop scheduling problem. Am. J. Ind. Bus. Manage. 6(06), 774 (2016)

    Google Scholar 

  32. Akter, S., Nahar, N., ShahadatHossain, M., Andersson, K.: A new crossover technique to improve genetic algorithm and its application to tsp. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6. IEEE (2019)

    Google Scholar 

  33. Hu, X.-B., Di Paolo, E.: Binary-representation-based genetic algorithm for aircraft arrival sequencing and scheduling. IEEE Trans. Intell. Trans. Syst. 9(2), 301–310 (2008)

    CrossRef  Google Scholar 

  34. Shen, Z., Yu, H., Yu, L., Miao, C., Chen, Y., Lesser, V.R.: Dynamic generation of internet of things organizational structures through evolutionary computing. IEEE Int. Things J. 5(2), 943–954 (2018)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Kumar Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pachuau, J.L., Roy, A., Kumar Saha, A. (2021). An Overview of Crossover Techniques in Genetic Algorithm. In: Das, B., Patgiri, R., Bandyopadhyay, S., Balas, V.E. (eds) Modeling, Simulation and Optimization. Smart Innovation, Systems and Technologies, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-15-9829-6_46

Download citation