Skip to main content

Chaotic Dynamo Models

  • Chapter
  • First Online:
The Chaotic Solar Cycle

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 321 Accesses

Abstract

In this section we discuss dynamo models that are used to explain the solar activity cycle. Any solar dynamo model should explain several observational features of solar activity: such as different solar cycles, polarity law, meridional flow, 22 year magnetic cycle etc. The basic ideas about an \(\alpha -\omega \) dynamo were already discussed in preceding chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanasoge S, Gizon L, Sreenivasan KR (2016) Seismic sounding of convection in the sun. Ann Rev Fluid Mech 48(1):191–217

    Article  ADS  MathSciNet  Google Scholar 

  2. Brown TM, Christensen-Dalsgaard J, Dziembowski WA, Goode P, Gough DO, Morrow CA (1989) Inferring the sun’s internal angular velocity from observed p-mode frequency splittings. Astrophys J 343:526

    Article  ADS  Google Scholar 

  3. Parker EN (1993) A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys J 408:707

    Article  ADS  Google Scholar 

  4. Basu S, Antia HM (2003) Changes in solar dynamics from 1995 to 2002. Astrophys J 585(1):553–565

    Google Scholar 

  5. Spiegel EA, Zahn JP (1992) The solar tachocline. Astron Astrophys 265:106–114

    ADS  Google Scholar 

  6. Rudiger G, Kitchatinov LL (1997) The slender solar tachocline: a magnetic model. Astron Nachricht 318(5):273

    Article  ADS  Google Scholar 

  7. Wood TS, Brummell NH (2018) A self-consistent model of the solar tachocline. Astrophys J 853(2):97

    Article  ADS  Google Scholar 

  8. Goode PR, Dziembowski WA, Korzennik SG, Rhodes Jr EJ (1991) What we know about the sun’s internal rotation from solar oscillations. Astrophys J 367:649

    Google Scholar 

  9. Parker EN (1957) The solar hydromagnetic dynamo. Proc Natl Acad Sci 43(1):8–14

    Article  ADS  Google Scholar 

  10. Durney BR (2000) On the differences between odd and even solar cycles. Solar Phys 196(2):421–426

    Article  ADS  Google Scholar 

  11. Charbonneau P (2001) Multiperiodicity, chaos, and intermittency in a reduced model of the solar cycle. Solar Phys 199(2):385–404

    Article  ADS  Google Scholar 

  12. Moffatt HK (1978) Magnetic field generation in electrically conducting fluids

    Google Scholar 

  13. Steenbeck M, Krause F, Rädler KH (1966) Berechnung der mittleren LORENTZ-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch CORIOLIS-Kräfte beeinflußter Bewegung. Zeitschrift Naturforschung Teil A 21:369

    Google Scholar 

  14. Dikpati M, de Toma G, Gilman PA, Arge CN, White OR (2004) Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys J 601(2):1136–1151

    Article  ADS  Google Scholar 

  15. Babcock HW (1961) The topology of the sun’s magnetic field and the 22-year cycle. Astrophys J 133:572

    Article  ADS  Google Scholar 

  16. Leighton RB (1969) A magneto-kinematic model of the solar cycle. Astrophys J 156:1

    Article  ADS  Google Scholar 

  17. Howard R, Labonte BJ (1980) The sun is observed to be a torsional oscillator with a period of 11 years. Astrophys J Lett 239:L33–L36

    Article  ADS  Google Scholar 

  18. Ribes JC, Nesme-Ribes E (1993) The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron Astrophys 276:549

    ADS  Google Scholar 

  19. Zolotova NV, Ponyavin DI, Arlt R, Tuominen I (2010) Secular variation of hemispheric phase differences in the solar cycle. Astron Nachricht 331(8):765

    Article  ADS  Google Scholar 

  20. Hanslmeier A, Brajša R, Čalogović J, Vršnak B, Ruždjak D, Steinhilber F, MacLeod CL, Ivezić Ž, Skokić I (2013) The chaotic solar cycle. II. Analysis of cosmogenic \(^{10}\)Be data. Astron Astrophys 550:A6

    Google Scholar 

  21. Hanslmeier A, Brajša R (2010) The chaotic solar cycle. I. Analysis of cosmogenic \(^{14}\)C-data. Astron Astrophys 509:A5

    Google Scholar 

  22. Vecchio A, Lepreti F, Laurenza M, Carbone V, Alberti T (2019) Solar activity cycles and grand minima occurrence. Nuovo Cimento C Geophys Space Phys C 42(1):15

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Hanslmeier .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanslmeier, A. (2020). Chaotic Dynamo Models. In: The Chaotic Solar Cycle. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-15-9821-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9821-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9820-3

  • Online ISBN: 978-981-15-9821-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics