Skip to main content

Long Term Solar Activity

  • Chapter
  • First Online:
The Chaotic Solar Cycle

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 354 Accesses

Abstract

In this chapter we discuss long term solar activity behavior. We first address the problem of how we can get longer time series of solar activity since telescopic observations of sunspots reach back only to 1610, when Galileo and others first observed them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This event affected telegraph networks.

  2. 2.

    See textbooks.

  3. 3.

    L\(\alpha \) denotes the Lyman Alpha line which is in the UV at \(\lambda = 121.5\) nm.

References

  1. Vaquero JM, Svalgaard L, Carrasco VMS, Clette F, Lefèvre L, Gallego MC, Arlt R, Aparicio AJP, Richard J-G, Howe R (2016) A revised collection of sunspot group numbers. Sol Phys 291:3061–3074

    Google Scholar 

  2. Dudok de Wit T, Lefèvre L, Clette F (2016) Uncertainties in the sunspot numbers: estimation and implications. Sol Phys 291:2709–2731

    Google Scholar 

  3. Wittmann AD, Xu ZT (1987) A catalogue of sunspot observations from 165 BC to AD 1684. Astron Astrophys Suppl 70:83–94

    Google Scholar 

  4. Arlt R (2011) The sunspot observations by Samuel Heinrich Schwabe. Astron Nachr 332:805

    Google Scholar 

  5. Schwabe H (1844) Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron Nachr 21:233

    Google Scholar 

  6. Arlt R (2008) Digitization of sunspot drawings by Staudacher in 1749–1796. Sol Phys 247:399–410

    Google Scholar 

  7. Eddy JA, Gilman PA, Trotter DE (1976) Solar rotation during the Maunder minimum. Sol Phys 46:3–14

    Google Scholar 

  8. Vaquero JM (2007) Historical sunspot observations: a review. Adv Space Res 40:929–941

    Google Scholar 

  9. Aldahan A, Hedfors J, Possnert G, Kulan A, Berggren A-M, Söderström C (2008) Atmospheric impact on beryllium isotopes as solar activity proxy. Geophys Res Lett 35:L21812

    Google Scholar 

  10. Murphy JO (1993) New Zealand tree ring-index data as a proxy indicator of 11 - year solar activity. South Stars 35:148–155

    Google Scholar 

  11. Thuillier G (2004) Variation of the solar diameter: a proxy for solar activity. In: Paillé J-P (ed) 35th COSPAR scientific assembly. COSPAR meeting, vol 35, p 1337

    Google Scholar 

  12. Dunham DW, Sofia S, Guhl K, Herald D (2016) Solar diameter measurements from eclipses as a solar variability proxy. In: Kosovichev AG, Hawley SL, Heinzel P (eds) Solar and stellar flares and their effects on planets. IAU symposium, vol 320, pp 351–354

    Google Scholar 

  13. Sofia S, Okeefe J, Lesh JR, Endal AS (1979) Solar constant - constraints on possible variations derived from solar diameter measurements. Science 204:1306–1308

    Google Scholar 

  14. Hauchecorne A, Meftah M, Irbah A, Couvidat S, Bush R, Hochedez J-F (2014) Solar radius determination from Sodism/Picard and HMI/SDO observations of the decrease of the spectral solar radiance during the 2012 June venus transit. Astrophys J 783:127

    Google Scholar 

  15. Dunham DW, Sofia S, Fiala AD, Herald D, Muller PM (1980) Observations of a probable change in the solar radius between 1715 and 1979. Science 210:1243–1245

    Google Scholar 

  16. Dunham DW, Dunham JB (1973) Observing total solar eclipses from near the edge of the predicted path. Moon 8:546

    Google Scholar 

  17. Casanovas J (1997) Early observations of sunspots: Scheiner and Galileo. In: Schmieder B, del Toro Iniesta JC, Vazquez M (eds) 1st advances in solar physics Euroconference. Advances in physics of sunspots. Astronomical society of the pacific conference series, vol 118, p 3

    Google Scholar 

  18. Vokhmyanin MV, Zolotova NV (2018) Sunspot positions and areas from observations by Galileo Galilei. Sol Phys 293:31

    Google Scholar 

  19. Eddy JA (1976) The Maunder minimum. Science 192:1189–1202

    Google Scholar 

  20. Neuhäuser R, Neuhäuser DL (2018) Historical observations of the Aurora as indicator for solar wind revisited catalogue for the Maunder minimum. In: EGU general assembly conference abstracts, vol 20, p 3644

    Google Scholar 

  21. Botley CM (1981) Hungarian auroral observations and the Maunder Minimum. Obs 101:123. https://ui.adsabs.harvard.edu/abs/1981Obs...101..123B, Provided by the SAO/NASA Astrophysics Data System

  22. Schöll M, Steinhilber F, Beer J, Haberreiter M, Schmutz W (2007) Long-term reconstruction of the total solar irradiance based on neutron monitor and sunspot data. Adv Space Res 40:996–999

    Article  ADS  Google Scholar 

  23. Bolduc C, Charbonneau P, Barnabé R, Bourqui MS (2014) A reconstruction of ultraviolet spectral irradiance during the Maunder minimum. Sol Phys 289:2891–2906

    Google Scholar 

  24. Mendoza B (1997) Estimations of Maunder minimum solar irradiance and Ca II H and K fluxes using rotation rates and diameters. Astrophys J 483:523–526

    Google Scholar 

  25. Feulner G (2011) Are the most recent estimates for Maunder minimum solar irradiance in agreement with temperature reconstructions? Geophys Res Lett 38:L16706

    Google Scholar 

  26. Huang M-HA (2010) Total solar irradiance in Maunder minimum derived from 14C record. In: 38th COSPAR scientific assembly. COSPAR meeting, vol 38, p 2

    Google Scholar 

  27. Krivova NA, Vieira LEA, Solanki SK (2010) Reconstruction of solar spectral irradiance since the Maunder minimum. J Geophys Res (Space Phys) 115(A12):A12112

    Google Scholar 

  28. Wenzler T, Solanki SK, Krivova NA, Fröhlich C (2006) Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astron Astrophys 460:583–595

    Google Scholar 

  29. Vieira LEA, Solanki SK (2010) Evolution of the solar magnetic flux on time scales of years to millenia. Astron Astrophys 509:A100

    Google Scholar 

  30. Fröhlich C, Finsterle W (2000) Total solar irradiance from VIRGO on SOHO. In: Wilson A (ed) The solar cycle and terrestrial climate, solar and space weather. ESA special publication, vol 463, p 665

    Google Scholar 

  31. Solanki SK, Krivova NA, Wenzler T (2005) Irradiance models. Adv Space Res 35:376–383

    Article  ADS  Google Scholar 

  32. Kato M, Arslanov KA, Kitagawa H, Masuda K, Matsumoto E, Muraki Y, Murata T, Naruse Y, Nishiyama T, Toyoizumi H (2001) Radiocarbon abundances in tree rings from the Spoerer minimum. In: International cosmic ray conference, vol 10, p 4035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Hanslmeier .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanslmeier, A. (2020). Long Term Solar Activity. In: The Chaotic Solar Cycle. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-15-9821-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9821-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9820-3

  • Online ISBN: 978-981-15-9821-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics