Skip to main content

Patient-Ventilator Asynchrony

  • Chapter
  • First Online:
Respiratory Monitoring in Mechanical Ventilation
  • 1363 Accesses

Abstract

Mechanical ventilation is one of the most important life-supporting strategies for patients with critical illnesses, which aims to improve gas exchange and decrease the patient’s work of breathing and unload the respiratory muscles [1–3]. Optimal patient-ventilator interaction is essential to achieve these goals. Therefore, neuromuscular blockade was always administrated to eliminate the patient’s respiratory efforts and controlled ventilation was used in the old days. As assisted ventilatory modalities are employed and new generation ventilators are developed, neuromuscular blockade prescription is decreasing and the interaction between the patient and the ventilation attracts more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brochard L, Harf A, Lorino H, et al. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989;139:513–21.

    Article  CAS  Google Scholar 

  2. Sassoon CS, Foster GT. Patient-ventilator asynchrony. Curr Opin Crit Care. 2001;7:28–33.

    Article  CAS  Google Scholar 

  3. Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med. 2006;32:34–47.

    Article  Google Scholar 

  4. Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001;163:1059–63.

    Article  CAS  Google Scholar 

  5. Chao DC, Scheinhorn DJ, Stearn- Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest. 1997;112:1592–9.

    Article  CAS  Google Scholar 

  6. Unroe M, MacIntyre N. Evolving approaches to assessing and monitoring patient-ventilator interactions. Curr Opin Crit Care. 2010;16:261–8.

    Article  Google Scholar 

  7. Nava S, Bruschi C, Fracchia C, et al. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J. 1997;10:177–83.

    Article  CAS  Google Scholar 

  8. Nilsestuen JO, Hargett KD. Using ventilator graphics to identify patient-ventilator asynchrony. Respir Care. 2005;50:202–34.

    PubMed  Google Scholar 

  9. Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41.

    Article  Google Scholar 

  10. Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.

    Article  Google Scholar 

  11. Colombo D, Cammarota G, Alemani M, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–7.

    Article  Google Scholar 

  12. Chen CW, Lin WC, Hsu CH. Pseudo-double-triggering. Intensive Care Med. 2007;33:742–3.

    Article  Google Scholar 

  13. Haynes JM. Patient-ventilator asynchrony and standard waveforms: looks can be deceiving. Respir Care. 2017;62:1004.

    Article  Google Scholar 

  14. Parthasarathy S, Jubran A, Tobin MJ. Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med. 1998;158:1471–8.

    Article  CAS  Google Scholar 

  15. Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggering breaths: a frequently unrecognized form of neuromechanical coupling. Chest. 2013;143:927–38.

    Article  Google Scholar 

  16. Baydur A, Behrakis PK, Zin WA, et al. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126:788–91.

    CAS  PubMed  Google Scholar 

  17. Van de Woestijne KP, Trop D, Clement J. Influence of the mediastinum on the measurement of esophageal pressure and lung compliance in man. Pflugers Arch. 1971;323:323–41.

    Article  Google Scholar 

  18. Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011;37:263–71.

    Article  Google Scholar 

  19. Mauri T, Bellani G, Grasselli G, et al. Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Med. 2013;39:282–91.

    Article  Google Scholar 

  20. Delisle S, Charbonney E, Albert M, et al. Patient-ventilator asynchrony due to reverse triggering occurring in brain-dead patients: clinical implications and physiological meaning. Am J Respir Crit Care Med. 2016;194:1166–8.

    Article  Google Scholar 

  21. Bellani G, Bronco A, Arrigoni Marocco S, et al. Measurement of diaphragmatic electrical activity by surface electromyography in intubated subjects and its relationship with inspiratory effort. Respir Care. 2018;63:1341–9.

    Article  Google Scholar 

  22. de Wit M. Monitoring of patient-ventilator interaction at the bedside. Respir Care. 2011;56:61–72.

    Article  Google Scholar 

  23. Nava S, Bruschi C, Rubini F. et la. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995;21:871–9.

    Article  CAS  Google Scholar 

  24. Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.

    Article  Google Scholar 

  25. Liao KM, Ou CY, Chen CW, et al. Classifying different types of double triggering based on airway pressure and flow deflection in mechanically ventilated patients. Respir Care. 2011;56:460–6.

    Article  Google Scholar 

  26. Beitler JR, Sands SA, Loring SH, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 2016;42:1427–36.

    Article  Google Scholar 

  27. Yonis H, Gobert F, Tapponnier R, et al. Reverse triggering in a patient with ARDS. Intensive Care Med. 2015;41:1711–2.

    Article  Google Scholar 

  28. He X, Luo XY, Chen GQ, et al. Detection of reverse triggering in a 55-year-old man under deep sedation and controlled mechanical ventilation. J Thorac Dis. 2018;10:E682–5.

    Article  Google Scholar 

  29. Imanaka H, Nishimura M, Takeuchi M, et al. Autotriggering caused by cardiogenic oscillation during flow triggered mechanical ventilation. Crit Care Med. 2000;28:402–7.

    Article  CAS  Google Scholar 

  30. Gentile MA. Cycling of the mechanical ventilation breath. Respir Care. 2011;56:52–60.

    Article  Google Scholar 

  31. Kondili E, Xirouchaki N, Georgopoulos D. Modulation and treatment of patient-ventilator dyssynchrony. Curr Opin Crit Care. 2007;13:84–9.

    Article  Google Scholar 

  32. Tokioka H, Tanaka T, Ishizu T, et al. The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg. 2001;92:161–5.

    Article  CAS  Google Scholar 

  33. Marini JJ. Dynamic hyperinflation and auto-positive end-expiratory pressure: lessons learned over 30 years. Am J Respir Crit Care Med. 2011;184:756–62.

    Article  Google Scholar 

  34. Berlin D. Hemodynamic consequences of auto-PEEP. J Intensive Care Med. 2014;29:81–6.

    Article  Google Scholar 

  35. Mulqueeny Q, Ceriana P, Carlucci A, et al. Automatic detection of ineffective triggering and double triggering during mechanical ventilation. Intensive Care Med. 2007;33:2014–8.

    Article  Google Scholar 

  36. Sinderby C, Liu S, Colombo D, et al. An automated and standardized neural index to quantify patient-ventilator interaction. Crit Care. 2013;17:R239.

    Article  Google Scholar 

  37. Sottile PD, Albers D, Higgins C, et al. The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm. Crit Care Med. 2018;46:e151–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, XY., Zhou, JX. (2021). Patient-Ventilator Asynchrony. In: Zhou, JX., Chen, GQ., Li, HL., Zhang, L. (eds) Respiratory Monitoring in Mechanical Ventilation. Springer, Singapore. https://doi.org/10.1007/978-981-15-9770-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9770-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9769-5

  • Online ISBN: 978-981-15-9770-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics