Skip to main content

Obstructive Pulmonary Disease

  • Chapter
  • First Online:
Respiratory Monitoring in Mechanical Ventilation
  • 1324 Accesses

Abstract

Patients with obstructive pulmonary diseases, mainly including chronic obstructive pulmonary disease (COPD) and asthma, compromise a considerable proportion of mechanically ventilated patients in the intensive care unit (ICU) [1]. Mechanically ventilated patients with comorbidity of COPD might have a longer duration of ventilation with difficult weaning. Nowadays, modern ventilators can display pressure-, flow-, and volume-time tracings, as well as pressure-volume and flow-volume curves at the bedside. Additionally, advanced respiratory mechanics monitoring modalities, such as esophageal pressure and electrical activity of the diaphragm, are available to provide sophisticated analysis of breathing efforts and diaphragm function. This information facilitates early identification of abnormalities, detection of patient-ventilator asynchrony, and optimization of mechanical ventilation settings. In this chapter, based on the introduction of the main pathophysiologic alterations in patients with obstructive pulmonary diseases undergoing mechanical ventilation, we will discuss respiratory mechanics monitoring, specifically on the measurement of dynamic hyperinflation and air trapping. In the end, we will briefly introduce the principle for ventilation management in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Penuelas O, Abraira V, Raymondos K, Rios F, Nin N, Apezteguia C, Violi DA, Thille AW, Brochard L, Gonzalez M, Villagomez AJ, Hurtado J, Davies AR, Du B, Maggiore SM, Pelosi P, Soto L, Tomicic V, D’Empaire G, Matamis D, Abroug F, Moreno RP, Soares MA, Arabi Y, Sandi F, Jibaja M, Amin P, Koh Y, Kuiper MA, Bulow HH, Zeggwagh AA, Anzueto A. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188:220–30.

    Article  Google Scholar 

  2. Blanch L, Bernabe F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005;50:110–23; discussion 123–114.

    PubMed  Google Scholar 

  3. Dhand R. Ventilator graphics and respiratory mechanics in the patient with obstructive lung disease. Respir Care. 2005;50:246–61; discussion 259–261.

    PubMed  Google Scholar 

  4. McFadden ER Jr. Acute severe asthma. Am J Respir Crit Care Med. 2003;168:740–59.

    Article  Google Scholar 

  5. Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389:1931–40.

    Article  Google Scholar 

  6. Tobin MJ, Lodato RFPEEP. Auto-PEEP, and waterfalls. Chest. 1989;96:449–51.

    Article  CAS  Google Scholar 

  7. Koutsoukou A, Pecchiari M. Expiratory flow-limitation in mechanically ventilated patients: a risk for ventilator-induced lung injury? World J Crit Care Med. 2019;8:1–8.

    Article  Google Scholar 

  8. Fernandez R, Benito S, Blanch L, Net A, Intrinsic PEEP. A cause of inspiratory muscle ineffectivity. Intensive Care Med. 1988;15:51–2.

    Article  CAS  Google Scholar 

  9. Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J. 1997;10:177–83.

    Article  CAS  Google Scholar 

  10. De Troyer A. Effect of hyperinflation on the diaphragm. Eur Respir J. 1997;10:708–13.

    PubMed  Google Scholar 

  11. Young IH, Bye PT. Gas exchange in disease: asthma, chronic obstructive pulmonary disease, cystic fibrosis, and interstitial lung disease. Compr Physiol. 2011;1:663–97.

    Article  Google Scholar 

  12. MacDonald MI, Shafuddin E, King PT, Chang CL, Bardin PG, Hancox RJ. Cardiac dysfunction during exacerbations of chronic obstructive pulmonary disease. Lancet Respir Med. 2016;4:138–48.

    Article  Google Scholar 

  13. Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med. 1995;21:522–36.

    Article  CAS  Google Scholar 

  14. Leatherman JW, Ravenscraft SA. Low measured auto-positive end-expiratory pressure during mechanical ventilation of patients with severe asthma: hidden auto-positive end-expiratory pressure. Crit Care Med. 1996;24:541–6.

    Article  CAS  Google Scholar 

  15. Milic-Emili J, Torchio R, D’Angelo E. Closing volume: a reappraisal (1967-2007). Eur J Appl Physiol. 2007;99:567–83.

    Article  Google Scholar 

  16. Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, Fan E, Brochard L. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197:132–6.

    Article  Google Scholar 

  17. Sun XM, Chen GQ, Zhou YM, Yang YL, Zhou JX. Airway closure could be confirmed by electrical impedance tomography. Am J Respir Crit Care Med. 2018;197:138–41.

    Article  Google Scholar 

  18. Patroniti N, Bellani G, Cortinovis B, et al. Role of absolute lung volume to assess alveolar recruitment in acute respiratory distress syndrome patients. Crit Care Med. 2010;38:1300–7.

    Article  Google Scholar 

  19. Bellani G, Grassi A, Sosio S, Foti G. Plateau and driving pressure in the presence of spontaneous breathing. Intensive Care Med. 2019;45:97–8.

    Article  Google Scholar 

  20. Bellani G, Coppadoro A, Patroniti N, Turella M, Arrigoni Marocco S, Grasselli G, Mauri T, Pesenti A. Clinical assessment of auto-positive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist. Anesthesiology. 2014;121(3):563–71.

    Article  Google Scholar 

  21. Viniol C, Vogelmeier CF. Exacerbations of COPD. Eur Respir Rev. 2018;27:170103.

    Article  Google Scholar 

  22. Jolliet P, Tassaux D. Clinical review: patient-ventilator interaction in chronic obstructive pulmonary disease. Crit Care. 2006;10:236.

    Article  Google Scholar 

  23. Oddo M, Feihl F, Schaller MD, Perret C. Management of mechanical ventilation in acute severe asthma: practical aspects. Intensive Care Med. 2006;32:501–10.

    Article  Google Scholar 

  24. Beck J, Emeriaud G, Liu Y, Sinderby C. Neurally-adjusted ventilatory assist (NAVA) in children: a systematic review. Minerva Anestesiol. 2016;82(8):874–83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, JX., Li, HL. (2021). Obstructive Pulmonary Disease. In: Zhou, JX., Chen, GQ., Li, HL., Zhang, L. (eds) Respiratory Monitoring in Mechanical Ventilation. Springer, Singapore. https://doi.org/10.1007/978-981-15-9770-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9770-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9769-5

  • Online ISBN: 978-981-15-9770-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics