Skip to main content
  • 1336 Accesses

Abstract

Chest X-ray radiography is a common auxiliary means in the diagnosis and treatment of critical care. It can provide information about the course of the disease and cardiopulmonary status. And in the critical care unit, patients often need a variety of life-supporting catheters, X-rays can help clinicians determine the location of these catheters and whether there are other complications during the placement of the catheters. Routine chest X-rays can help doctors determine if treatments are effective and manage potential complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubinowitz AN, Siegel MD, Tocino I. Thoracic imaging in the ICU. Crit Care Clin. 2007;23(3):539–73.

    Article  PubMed  Google Scholar 

  2. Bentz MR, Primack SL. Intensive care unit imaging. Clin Chest Med. 2015;36(2):219–34.

    Article  PubMed  Google Scholar 

  3. Cadman A, Lawrance JA, Fitzsimmons L, et al. To clot or not to clot? That is the question in central venous catheters. Clin Radiol. 2004;59(9):349–55.

    Article  CAS  PubMed  Google Scholar 

  4. Sheuland J, Hireleman M, Hoang K, et al. Lobar collapse in the surgical intensive care unit. Br J Radiol. 1983;56(668):531–4.

    Article  Google Scholar 

  5. Liu SY, Tsai IT, Yang PJ. Pneumothorax and deep sulcus sign. QJM. 2016;109(9):621–2.

    Article  PubMed  Google Scholar 

  6. Dussik KT. On the possibility of using ultrasound waves as a diagnostic aid. Neurol Psychiat. 1942;174:153–68.

    Article  Google Scholar 

  7. Dénier A. Les ultrasons, leur application au diagnostic. Presse Méd. 1946;22:307–8.

    Google Scholar 

  8. Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577–91.

    Article  PubMed  Google Scholar 

  9. Lichtenstein D, Lascols N, Mezière G, et al. Ultrasound diagnosis of alveolar consolidation in the critically ill. Intensive Care Med. 2004;30(2):276–81.

    Article  PubMed  Google Scholar 

  10. Volpicelli G, Mussa A, Garofalo G, et al. Bedside lung ultrasound in the assessment of alveolar-interstitial syndrome. Am J Emerg Med. 2006;24(6):689–96.

    Article  PubMed  Google Scholar 

  11. Bouzat P, Francony G, Declety P, et al. Transcranial Doppler to screen on admission patients with mild to moderate traumatic brain injury. Neurosurgery. 2011;68(6):1603–10.

    Article  PubMed  Google Scholar 

  12. Troianos CA, Hartman GS, Glas KE, et al. Guidelines for performing ultrasound guided vascular cannulation: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2011;24(12):1291–318.

    Article  PubMed  Google Scholar 

  13. Laursen CB, Sloth E, Lambrechtsen J, et al. Focused sonography of the heart, lungs, and deep veins identifies missed life-threatening conditions in admitted patients with acute respiratory symptoms. Chest. 2013;144(6):1868–75.

    Article  PubMed  Google Scholar 

  14. Zieleskiewicz L, Muller L, Lakhal K, et al. Point-of-care ultrasound in intensive care units: assessment of 1073 procedures in a multicentric, prospective, observational study. Intensive Care Med. 2015;41(9):1638–47.

    Article  PubMed  Google Scholar 

  15. Laursen CB, Sloth E, Lassen AT, et al. Point-of-care ultrasonography in patients admitted with respiratory symptoms: a single-blind, randomised controlled trial. Lancet Respir Med. 2014;2(8):638–46.

    Article  PubMed  Google Scholar 

  16. Testa A, Soldati G, Copetti R, et al. Early recognition of the 2009 pandemic influenza A (H1N1) pneumonia by chest ultrasound. Crit Care. 2012;16(1)

    Google Scholar 

  17. Gehmacher O, Mathis G, Kopf A, et al. Ultrasound imaging of pneumonia. Ultrasound Med Biol. 1995;21(9):1119–22.

    Article  CAS  PubMed  Google Scholar 

  18. Reissig A, Kroegel C. Sonographic diagnosis and follow-up of pneumonia:a prospective study. Respiration. 2007;74(5):537–47.

    Article  PubMed  Google Scholar 

  19. Mongodi S, Via G, Girard M, et al. Lung ultrasound for early diagnosis of ventilator-associated pneumonia. Chest. 2016;149(4):969–80.

    Article  PubMed  Google Scholar 

  20. Al Deeb M, Barbic S, Featherstone R, et al. Point-of-care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis. Acad Emerg Med. 2014;21(8):843–52.

    Article  PubMed  Google Scholar 

  21. Arbelot C, Ferrari F, Bouhemad B, et al. Lung ultrasound in acute respiratory distress syndrome and acute lung injury. Curr Opin Crit Care. 2008;14(1):70–4.

    Article  PubMed  Google Scholar 

  22. Corradi F, Brusasco C, Pelosi P. Chest ultrasound in acute respiratory distress syndrome. Curr Opin Crit Care. 2014;20(1):98–103.

    Article  PubMed  Google Scholar 

  23. Bass CM, Sajed DR, Adedipe AA, West TE. Pulmonary ultrasound and pulse oximetry versus chest radiography and arterial blood gas analysis for the diagnosis of acute respiratory distress syndrome: a pilot study. Crit Care. 2015;19(1):282.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.

    PubMed  Google Scholar 

  25. Lichtenstein D, Meziere G, Seitz J. The dynamic air bronchogram. A lung ultrasound sign of alveolar consolidation ruling out atelectasis. Chest. 2009;135(6):1421–5.

    Article  PubMed  Google Scholar 

  26. Yu CJ, Yang PC, Wu HD, et al. Ultrasound study in unilateral hemithorax opacification. Image comparison with computed tomography. Am Rev Respir Dis. 1993;147(2):430–4.

    Article  CAS  PubMed  Google Scholar 

  27. Yu CJ, Yang PC, Chang DB, Luh KT. Diagnostic and therapeutic use of chest sonography: value in critically ill patients. Am J Roentgenol. 1992;159(4):695–701.

    Article  CAS  Google Scholar 

  28. Lichtenstein D, Hulot JS, Rabiller A, et al. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;25(9):955–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lomas DJ, Padley SG, Flower CD. The sonographic appearances of pleural fluid. Br J Radiol. 1993;66(787):619–24.

    Article  CAS  PubMed  Google Scholar 

  30. Vignon P, Chastagner C, Berkane V, et al. Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med. 2005;33:1757–63.

    Article  PubMed  Google Scholar 

  31. Balik M, Plasil P, Waldauf P, et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32(2):318.

    Article  CAS  PubMed  Google Scholar 

  32. Perazzo A, Gatto P, Barlascini C, et al. Can ultrasound guidance reduce the risk of pneumothorax following thoracentesis? J Bras Pneumol. 2014;40(1):6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Blaivas M, Lyon M, Duggal S. A prospective comparison of supine chest radiography and bedside ultrasound for the diagnosis of traumatic pneumothorax. Acad Emerg Med. 2005;12(9):844–9.

    Article  PubMed  Google Scholar 

  34. Soldati G, Testa A, Sher S, et al. Occult traumatic pneumothorax: diagnostic accuracy of lung ultrasonography in the emergency department. Chest. 2008;133(1):204–11.

    Article  PubMed  Google Scholar 

  35. Volpicelli G, Boero E, Sverzellati N, et al. Semi-quantification of pneumothorax volume by lung ultrasound. Intensive Care Med. 2014;40:1460–7.

    Article  PubMed  Google Scholar 

  36. Taylor RA, Davis J, Liu R, et al. Point-of-care focused cardiac ultrasound for prediction of?Pulmonary embolism adverse outcomes. J Emerg Med. 2013;45(3):392–9.

    Article  PubMed  Google Scholar 

  37. Dunn A. In suspected PE with Wells score>4 or positive D-dimer, multiorgan ultrasonography had 90% sensitivity for PE. Ann Intern Med. 2014;161(8):JC12–3.

    Article  PubMed  Google Scholar 

  38. Nazerian P, Vanni S, Volpicelli G, et al. Accuracy of point-of-care multiorgan ultrasonography for the diagnosis of pulmonary embolism. Chest. 2014;145(5):950–7.

    Article  PubMed  Google Scholar 

  39. Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure. Chest. 2008;134(1):117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kimura BJ, Yogo N, O’Connell CW, et al. Cardiopulmonary limited ultrasound examination for “quick-look” bedside application. Am J Cardiol. 2011;108(4):586–90.

    Article  PubMed  Google Scholar 

  41. Breitkreutz R, Price S, Steiger HV, et al. Focused echocardiographic evaluation in life support and peri-resuscitation of emergency patients: a prospective trial. Resuscitation. 2010;81(11):1527–33.

    Article  PubMed  Google Scholar 

  42. Lichtenstein D, Mézière G, Biderman P, et al. The comet tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997;156(5):1640–6.

    Article  CAS  PubMed  Google Scholar 

  43. Soldati G, Inchingolo R, Smargiassi A, et al. Ex vivo lung sonography: morphologic-ultrasound relationship. Ultrasound Med Biol. 2012;38(7):1169–79.

    Article  PubMed  Google Scholar 

  44. Bouhemad B, Brisson H, Le-Guen M, et al. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011;183(3):341–7.

    Article  PubMed  Google Scholar 

  45. Chiumello D, Mongodi S, Algieri I, et al. Assessment of lung aeration and recruitment by CT scan and ultrasound in ARDS patients. Crit Care Med. 2018;46(11):1761–8.

    Article  PubMed  Google Scholar 

  46. Bouhemad B, Liu ZH, Arbelot C, et al. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Critical Care Med. 2010;38(1):84–92.

    Article  Google Scholar 

  47. Baldi G, Gargani L, Abramo A, et al. Lung water assessment by lung ultrasonography in intensive care: a pilot study. Intensive Care Med. 2013;39(1):74–84.

    Article  PubMed  Google Scholar 

  48. Zhao Z, Jiang L, Xi X, et al. Prognostic value of extravascular lung water assessed with lung ultrasound score by chest sonography in patients with acute respiratory distress syndrome. BMC Pulm Med. 2015;15:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Caltabeloti F, Monsel A, Arbelot C, et al. Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: a lung ultrasound observational study. Crit Care. 2014;18(3):R91.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yin W, Zou T, Qin Y, et al. Poor lung ultrasound score in shock patients admitted to the ICU is associated with worse outcome. BMC Pulm Med. 2019;19(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tusman G, Acosta CM, Costantini M. Ultrasonography for the assessment of lung recruitment maneuvers. Crit Ultrasound J. 2016;8(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bouhemad B, Rouby JJ. Bedside ultrasound assessment of positive end expiratory pressure–induced lung recruitment. Am J Respir Crit Care Med. 2012;185(4):457–8.

    Article  Google Scholar 

  53. Du J, Tan J, Yu K, et al. Lung recruitment maneuvers using direct ultrasound guidance: a case study. Respir Care. 2014;60(5)

    Google Scholar 

  54. Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(11):1233–9.

    Article  PubMed  Google Scholar 

  55. Wang XT, Ding X, Zhang HM, et al. Lung ultrasound can be used to predict the potential of prone positioning and assess prognosis in patients with acute respiratory distress syndrome. Crit Care. 2016;20(1):385.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Soummer A, Perbet S, Brisson H, et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Crit Care Med. 2012;40(7):2064–72.

    Article  PubMed  Google Scholar 

  57. Umbrello M, Formenti P. Ultrasonographic assessment of diaphragm function in critically ill subjects. Respir Care. 2016;61(4):542–55.

    Article  PubMed  Google Scholar 

  58. Demoule A, Jung B, Prodanovic H, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact—a prospective study. Am J Respir Crit Care Med. 2013;188(2):213–9.

    Article  PubMed  Google Scholar 

  59. Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by M-mode ultrasonography. Chest. 2009;135(2):391–400.

    Article  PubMed  Google Scholar 

  60. Mayo P, Volpicelli G, Lerolle N, et al. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med. 2016;42(7):1107–17.

    Article  CAS  PubMed  Google Scholar 

  61. Goligher EC, Laghi F, Detsky ME, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41(4):642–9.

    Article  PubMed  Google Scholar 

  62. Gottesman E, Mccool FD. Ultrasound evaluation of the paralyzed diaphragm. Am J Respir Crit Care Med. 1997;55(5):1570–4.

    Article  Google Scholar 

  63. Summerhill EM, El-Sameed YA, Glidden TJ, et al. Monitoring recovery from diaphragm paralysis with ultrasound. Chest. 2008;133(3):737–43.

    Article  PubMed  Google Scholar 

  64. David C, Benditt JO, Scott E, et al. Diaphragm thickening during inspiration. J Appl Physiol. 1997;83(1):291–6.

    Article  Google Scholar 

  65. Ueki J, De Bruin PF, Pride NB. In vivo assessment of diaphragm contraction by ultrasound in normal subjects. Thorax. 1995;50(11):1157–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ayoub J, Cohendy R, Dauzat M, et al. Non-invasive quantification of diaphragm kinetics using m-mode sonography. Can J Anaesth. 1997;44(7):739–44.

    Article  CAS  PubMed  Google Scholar 

  67. Wait JL, Nahormek PA, Yost WT, et al. Diaphragmatic thickness-lung volume relationship in vivo. J Appl Physiol. 1989;67(4):1560–8.

    Article  CAS  PubMed  Google Scholar 

  68. Umbrello M, Formenti P, Longhi D, et al. Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care. 2015;19(1):161.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Harris RS, Giovannetti M, Kim BK. Normal ventilatory movement of the right hemidiaphragm studied by ultrasonography and pneumotachography. Radiology. 1983;146(1):141–4.

    Article  CAS  PubMed  Google Scholar 

  70. Zambon M, Greco M, Bocchino S, et al. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review. Intensive Care Med. 2017;43(1):29–38.

    Article  PubMed  Google Scholar 

  71. Cardenas LZ, Santana PV, Caruso P, et al. Diaphragmatic ultrasound correlates with inspiratory muscle strength and pulmonary function in healthy subjects. Ultrasound Med Biol. 2018;44(4):786–93.

    Article  PubMed  Google Scholar 

  72. Kim WY, Suh HJ, Hong SB, et al. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011;39(12):2627–30.

    Article  PubMed  Google Scholar 

  73. Dinino E, Gartman EJ, Sethi JM, et al. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2014;69(5):431–5.

    Article  Google Scholar 

  74. Ferrari G, De Filippi G, Elia F, et al. Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation. Crit Ultrasound J. 2014;6(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Farghaly S, Hasan AA. Diaphragm ultrasound as a new method to predict extubation outcome in mechanically ventilated patients. Aust Crit Care. 2016;30(1):37–43.

    Article  PubMed  Google Scholar 

  76. Sferrazza Papa GF, Pellegrino GM, Di Marco F, et al. A review of the ultrasound assessment of diaphragmatic function in clinical practice. Respiration. 2016;91(15):403–11.

    Article  PubMed  Google Scholar 

  77. Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by m—mode uhrasonography: methods, reproducibility and normal values. Chest. 2009;135(2):391–400.

    Article  PubMed  Google Scholar 

  78. Lloyd T, Tang YM, Benson MD, et al. Diaphragmatic paralysis:the use of M mode ultrasound for diagnosis in adults. Spinal Cord. 2006;44(8):505–8.

    Article  CAS  PubMed  Google Scholar 

  79. Ayoub J, Cohendy R, Prioux J, et al. Diaphragm movement before and after cholecystectomy: a sonographic study. Anesth Analg. 2001;92(3):755–61.

    CAS  PubMed  Google Scholar 

  80. Kim SH, Na S, Choi JS, et al. An evaluation of diaphragmatic movement by M-mode sonography as a predictor of pulmonary dysfunction after upper abdominal surgery. Anesth Analg. 2010;110(5):1349–54.

    Article  PubMed  Google Scholar 

  81. Matamis D, Soilemezi E, Tsagourias M, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39(5):801–10.

    Article  PubMed  Google Scholar 

  82. Beatriz L, Cecilia H, Ana A. Electrical impedance tomography. Ann Transl Med. 2018;6(2):26.

    Article  Google Scholar 

  83. Bachmann MC, Morais C, Bugedo G, et al. Electrical impedance tomography in acute respiratory distress syndrome. Crit Care. 2018;22(1):263.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Frerichs I. Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas. 2000;21(2):R1–21.

    Article  CAS  PubMed  Google Scholar 

  85. Shono A, Kotani T. Clinical implication of monitoring regional ventilation using electrical impedance tomography. J Intensive Care. 2019;7:4.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188(12):1420–7.

    Article  PubMed  Google Scholar 

  87. Frerichs I, Hinz J, Herrmann P, et al. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imaging. 2002;21(6):646–52.

    Article  PubMed  Google Scholar 

  88. Morais C, De S, Filho J, et al. Monitoring of pneumothorax appearance with electrical impedance tomography during recruitment maneuvers. Am J Respir Crit Care Med. 2017;195(8):1070–3.

    Article  PubMed  Google Scholar 

  89. Chen L, Del Sorbo L, Luca Grieco D, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197:132–6.

    Article  PubMed  Google Scholar 

  90. Sun XM, Chen GQ, Zhou YM, et al. Airway closure could be confirmed by electrical impedance tomography. Am J Respir Crit Care Med. 2018;197:138–41.

    Article  PubMed  Google Scholar 

  91. Hillner BE, et al. Impact of 18F-FDG PET used after initial treatment of cancer: comparison of the National Oncologic PET registry 2006 and 2009 cohorts. J Nucl Med. 2012;53(5):831–7.

    Article  PubMed  Google Scholar 

  92. Johnson GB, et al. Future of thoracic PET scanning. Chest. 2015;147(1):25–30.

    Article  PubMed  Google Scholar 

  93. Brownell GL, Sweet WH. Localization of brain tumors with positron emitters. Nucleonics. 1953;11(11):40–5.

    Google Scholar 

  94. Koukourakis G, et al. Overview of positron emission tomography chemistry: clinical and technical considerations and combination with computed tomography. J BUON. 2009;14(4):575–80.

    CAS  PubMed  Google Scholar 

  95. Ter-Pogossian MM, et al. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  96. Phelps ME, et al. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975;16(3):210–24.

    CAS  PubMed  Google Scholar 

  97. Khalil MM. Basic science of PET imaging. Heidelberg: Springer; 2017.

    Book  Google Scholar 

  98. Harris RS, Schuster DP. Visualizing lung function with positron emission tomography. J Appl Physiol. 2007;102(1):448–58.

    Article  PubMed  Google Scholar 

  99. Rhodes CG, et al. Quantification of regional V/Q ratios in humans by use of PET. I. Theory. J Appl Physiol (1985). 1989;66(4):1896–904.

    Article  CAS  Google Scholar 

  100. Rhodes CG, et al. Quantification of regional V/Q ratios in humans by use of PET. II. Procedure and normal values. J Appl Physiol. 1989;66(4):1905–13.

    Article  CAS  PubMed  Google Scholar 

  101. Mijailovich SM, Treppo S, Venegas JG. Effects of lung motion and tracer kinetics corrections on PET imaging of pulmonary function. J Appl Physiol (1985). 1997;82(4):1154–62.

    Article  CAS  Google Scholar 

  102. Musch G, et al. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol (1985). 2002;93(5):1841–51.

    Article  Google Scholar 

  103. Galletti GG, Venegas JG. Tracer kinetic model of regional pulmonary function using positron emission tomography. J Appl Physiol (1985). 2002;93(3):1104–14.

    Article  Google Scholar 

  104. O'Neill K, et al. Modeling kinetics of infused 13NN-saline in acute lung injury. J Appl Physiol (1985). 2003;95(6):2471–84.

    Article  CAS  Google Scholar 

  105. Musch G, et al. Mechanism by which a sustained inflation can worsen oxygenation in acute lung injury. Anesthesiology. 2004;100(2):323–30.

    Article  PubMed  Google Scholar 

  106. Musch G, et al. Relation between shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med. 2008;177(3):292–300.

    Article  PubMed  Google Scholar 

  107. Richard JC, et al. Quantitative assessment of regional alveolar ventilation and gas volume using 13N-N2 washout and PET. J Nucl Med. 2005;46(8):1375–83.

    PubMed  Google Scholar 

  108. Wellman TJ, et al. Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen. J Nucl Med. 2010;51(4):646–53.

    Article  PubMed  Google Scholar 

  109. Chesler DA, et al. Three-dimensional reconstruction of lung perfusion image with positron detection. J Nucl Med. 1975;16(1):80–2.

    CAS  PubMed  Google Scholar 

  110. Hnatowich DJ. Labeling of tin-soaked albumin microspheres with 68Ga. J Nucl Med. 1976;17(1):57–60.

    CAS  PubMed  Google Scholar 

  111. Hofman MS, et al. 68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: a pilot study with comparison to conventional scintigraphy. J Nucl Med. 2011;52(10):1513–9.

    Article  CAS  PubMed  Google Scholar 

  112. Borges JB, et al. Ventilation distribution studies comparing Technegas and "Gallgas" using 68GaCl3 as the label. J Nucl Med. 2011;52(2):206–9.

    Article  PubMed  Google Scholar 

  113. Richter T, et al. Reduced pulmonary blood flow in regions of injury 2 hours after acid aspiration in rats. BMC Anesthesiol. 2015;15:36.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Schuster DP, et al. Regional pulmonary perfusion in patients with acute pulmonary edema. J Nucl Med. 2002;43(7):863–70.

    PubMed  Google Scholar 

  115. Velazquez M, Schuster DP. Perfusion redistribution after alveolar flooding: vasoconstriction vs. vascular compression. J Appl Physiol (1985). 1991;70(2):600–7.

    Article  CAS  Google Scholar 

  116. Mintun MA, et al. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin. J Nucl Med. 1987;28(11):1704–16.

    CAS  PubMed  Google Scholar 

  117. Velazquez M, et al. Regional lung water measurements with PET: accuracy, reproducibility, and linearity. J Nucl Med. 1991;32(4):719–25.

    CAS  PubMed  Google Scholar 

  118. Jacene HA, Cohade C, Wahl RL. F-18 FDG PET/CT in acute respiratory distress syndrome: a case report. Clin Nucl Med. 2004;29(12):786–8.

    Article  PubMed  Google Scholar 

  119. Chen DL, Schuster DP. Positron emission tomography with [18F]fluorodeoxyglucose to evaluate neutrophil kinetics during acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L834–40.

    Article  CAS  PubMed  Google Scholar 

  120. Bellani G, et al. Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-D-glucose PET/CT study. Crit Care Med. 2009;37(7):2216–22.

    Article  PubMed  Google Scholar 

  121. Bellani G, et al. Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med. 2011;183(9):1193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chrysikopoulos, H.S., Clinical MR imaging and physics. 2009.

    Google Scholar 

  123. Bieri O. Ultra-fast steady state free precession and its application to in vivo 1 H morphological and functional lung imaging at 1.5 tesla. Magn Reson Med. 2013;70(3):657–63.

    Article  CAS  PubMed  Google Scholar 

  124. Johnson KM, et al. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med. 2013;70(5):1241–50.

    Article  PubMed  Google Scholar 

  125. Albert MS, et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature. 1994;370(6486):199–201.

    Article  CAS  PubMed  Google Scholar 

  126. MacFall JR, et al. Human lung air spaces: potential for MR imaging with hyperpolarized he-3. Radiology. 1996;200(2):553–8.

    Article  CAS  PubMed  Google Scholar 

  127. Matsuoka S, et al. Functional MR imaging of the lung. Magn Reson Imaging Clin N Am. 2008;16(2):275–89. ix

    Article  PubMed  Google Scholar 

  128. McGee KP, et al. Magnetic resonance assessment of parenchymal elasticity in normal and edematous, ventilator-injured lung. J Appl Physiol (1985). 2012;113(4):666–76.

    Article  CAS  Google Scholar 

  129. Cereda M, et al. Quantitative imaging of alveolar recruitment with hyperpolarized gas MRI during mechanical ventilation. J Appl Physiol. 2011;110(2):499–511.

    Article  PubMed  Google Scholar 

  130. Kuethe DO, et al. Magnetic resonance imaging provides sensitive in vivo assessment of experimental ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;311(2):L208–18.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chiumello D, et al. Clinical review: lung imaging in acute respiratory distress syndrome patients--an update. Crit Care. 2013;17(6):243.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nensa F, et al. Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol. 2014;20:438–47.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, JR., Chen, QQ., Zhou, JX., Zhou, YM. (2021). Lung Imaging. In: Zhou, JX., Chen, GQ., Li, HL., Zhang, L. (eds) Respiratory Monitoring in Mechanical Ventilation. Springer, Singapore. https://doi.org/10.1007/978-981-15-9770-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9770-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9769-5

  • Online ISBN: 978-981-15-9770-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics