Skip to main content

Ga2O3 Based Heterostructure FETs (HFETs) for Microwave and Millimeter-Wave Applications

  • Chapter
  • First Online:
Emerging Trends in Terahertz Engineering and System Technologies

Abstract

The rapid development of the power electronic devices over the last few decades to cater demands of ever increasing wireless communication technologies, traditional as well as new military applications, and many more, have been further fueled by work-from-home (WFH) due to unprecedented global pandemic COVID-19. These high frequencies and high-power applications have necessitated the introduction and development of wide bandgap semiconductors over the period because of their suitable material properties. However, these wide bandgap materials, such as silicon carbide (SiC) and gallium nitride (GaN), based device technologies have already extended their cycle of development and optimization due to various reasons. Moreover, still facing critical challenges like producing large-size, cost-effective, and high-quality substrates. In the quest of better material properties suitable for high-voltage and high-frequency applications, a new ultra-wide bandgap (UWB) semiconductor material gallium oxide (Ga2O3), although studied and reported way back in mid of twentieth century, has attracted research community only in last few years as a supplement to existing silicon carbide (SiC) and gallium nitride (GaN) technologies. Ga2O3 is an ultra-wide bandgap (UWB) semiconductor having different crystal structures with energy bandgap values up to 5.3 eV, and bulk crystals can be grown using melt-growth techniques which facilitate the availability of large-size, cost-effective, single-crystal substrates. Gallium oxide crystallizes into five different structures: monoclinic, rhombohedral, defective spinel, cubic, and orthorhombic structures, and represented as β-, α-, γ-, δ-, and ε-Ga2O3, respectively. Among these Ga2O3 polymorphs, β-Ga2O3 is most thermally stable and widely studied as well as reported. Apart from an edge on high-quality native-substrate over existing GaN technology, β-Ga2O3 offers other promising features relating to power device applications, such as large bandgap of 4.9 eV and critical electric field up to 8 MV/cm. This high critical electric field enables significant improvement in the performance of the β-Ga2O3 based high-voltage Schottky rectifiers and enhancement mode (e-mode) metal–oxide–semiconductor field-effect transistors (MOSFETs) over SiC and GaN power devices. Nonetheless, β-Ga2O3 also faces some issues such as relatively low electron mobility that limits DC and on-state performance, the high thermal resistance of the material requires device level thermal management and absence of p-type doping restricts device structure types. In this chapter the overview of state-of-the-art β-Ga2O3 technologies as a supplement to existing SiC or GaN counterparts with a perspective on the growth and development of β-Ga2O3 heterostructure is presented. The device design, microwave, and millimeter-wave (mmW) performance as well as challenges are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Ahmadi, Y. Oshima, Materials issues and devices of α- and β-Ga2O3. J. Appl. Phys. 126, 160901 (2019). https://doi.org/10.1063/1.5123213

    Article  ADS  Google Scholar 

  2. S.J. Pearton, F. Ren, M. Tadjer, J. Kim, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 124(22), 220901 (2018)

    Article  Google Scholar 

  3. S.J. Pearton et al., A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5(1), 011301 (2018)

    Article  ADS  Google Scholar 

  4. R. Roy, V.G. Hill, E.F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O. J. Am. Chem. Soc. 74(3), 719–722 (1952)

    Article  Google Scholar 

  5. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, I. Tanaka, Structures and energetics of Ga2O3 polymorphs. J. Phys. Condens. Matter. 19(34), 346211 (2007)

    Article  Google Scholar 

  6. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74(19), 195123 (2006)

    Article  ADS  Google Scholar 

  7. D. Shinohara, S. Fujita, Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn. J. Appl. Phys. 47, 7311–7313 (2008)

    Article  ADS  Google Scholar 

  8. T. Oshima, T. Nakazono, A. Mukai, A. Ohtomo, Epitaxial growth of γ-Ga2O3 films by mist chemical vapor deposition. J. Cryst. Growth 359, 60 (2012)

    Article  ADS  Google Scholar 

  9. H.H. Tippins, Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys. Rev. 140(1A), A316 (1965)

    Article  ADS  Google Scholar 

  10. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl. Phys. Lett. 70(26), 3561–3563 (1997)

    Article  ADS  Google Scholar 

  11. M. Orita, H. Ohta, M. Hirano, H. Hosono, Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl. Phys. Lett. 77(25), 4166–4168 (2000)

    Article  ADS  Google Scholar 

  12. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal semiconductor field effect transistors on single crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100(1), 013504 (2012)

    Article  ADS  Google Scholar 

  13. E.A. Jones, F.F. Wang, D. Costinett, Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), (2016)

    Google Scholar 

  14. Z. Hu, H. Zhou, Q. Feng, Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett. 39(10), 1564 (2018)

    Article  ADS  Google Scholar 

  15. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett. 37(212), (2016)

    Google Scholar 

  16. A.J. Green, K.D. Chabak, E.R. Heller, R.C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S.E. Tetlak, A. Crespo, 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 37, 902 (2016)

    Article  ADS  Google Scholar 

  17. K.D. Chabak, N. Moser, A.J. Green, D.E. Walker Jr., S.E. Tetlak, E. Heller, A. Crespo, R. Fitch, J.P. McCandless, K. Leedy, M. Baldini, Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl. Phys. Lett. 109, 213501 (2016)

    Google Scholar 

  18. H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, D.Y. Peide, High-performance depletion/enhancement mode β-Ga2O3 on insulator (GOOI) field effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett. 38, 103 (2017)

    Article  ADS  Google Scholar 

  19. S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, S. Rajan, Delta-doped beta-gallium oxide field effect transistor. Appl. Phys. Express 10, 051102 (2017)

    Article  ADS  Google Scholar 

  20. Y. Zhang, A. Neal, Z. Xia, C. Joishi, J.M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J.P. Heremans, S. Rajan, Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures. Appl. Phys. Lett. 112, 173502 (2018)

    Google Scholar 

  21. R. Singh, T.R. Lenka, R.T. Velpula, B. Jain, H.Q.T. Bui, H.P.T. Nguyen, A novel β-Ga2O3 HEMT with fT of 166 GHz and X-band POUT of 2.91 W/mm. Int. J. Numer. Model. Electron. Netw. Devices Fields (Willey) (2020).https://doi.org/10.1002/jnm.2794

  22. S. Kumar, R. Soman, A.S. Pratiyush, R. Muralidharan, D.N. Nath, A performance comparison between β-Ga2O3 and GaN HEMTs. IEEE Trans. Electron Devices 66(8), 3310–3317 (2019)

    Article  ADS  Google Scholar 

  23. Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brutzam, R. Bertram, S. Ganschow, R. Fornari, Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst. Res. Technol. 45(12), 1229–1236 (2010)

    Article  Google Scholar 

  24. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J. Appl. Phys. 110(6), 063720 (2011)

    Article  ADS  Google Scholar 

  25. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn. J. Appl. Phys. Part 1 47(11R), 8506 (2008)

    Article  Google Scholar 

  26. E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 270(3–4), 420–426 (2004)

    Article  ADS  Google Scholar 

  27. Y. Zhang et al., Evaluation of low-temperature saturation velocity in β-(AlxGa1−x)2O3/Ga2O3 modulation-doped field-effect transistors. IEEE Trans. Electron Devices 66(3), 1574–1578 (2019)

    Article  ADS  Google Scholar 

  28. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, I. Tanaka, Structures and energetics of Ga2O3 polymorphs. J. Phys. Condens. Matter 19, 346211 (2007)

    Article  Google Scholar 

  29. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rerat, First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123 (2006)

    Article  ADS  Google Scholar 

  30. P. Kroll, R. Dronskowski, M. Martin, Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga–O–N. J. Mater. Chem. 15, 3296 (2005)

    Article  Google Scholar 

  31. H.Y. Playford, A.C. Hannon, E.R. Barney, R.I. Walton, Structures of uncharacterized polymorphs of gallium oxide from total neutron diffraction. Chem A Eur. J. 19, 2803 (2013)

    Google Scholar 

  32. B. Bayraktaroglu, Assessment of gallium oxide technology. Air Force Research Laboratory Report No. AFRL-RY-WP-TR-2017-0167 (2017)

    Google Scholar 

  33. L.L. Liu, M.K. Li, D.Q. Yu, J. Zhang, H. Zhang, C. Qian, Z. Yang, Fabrication and characteristics of n-doped β-Ga2O3 nanowires. Appl. Phys. A 98, 831 (2010)

    Article  ADS  Google Scholar 

  34. Q. Feng, J. Liu, Y. Yang, D. Pan, Y. Xing, X. Shi, X. Xia, H. Liang, Catalytic growth and characterization of single crystalline Zn doped p-type β-Ga2O3 nanowires. J. Alloys Compd. 687 (2016)

    Google Scholar 

  35. Md.M. Islam et al., Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Sci. Rep. 10, 6134 (2020)

    Article  ADS  Google Scholar 

  36. E. Chikoidze et al., P-type β-gallium oxide: a new perspective for power and optoelectronic devices. Mater. Today Phys. 3, 118–126 (2017)

    Article  Google Scholar 

  37. E.G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki, Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl. Phys. Lett. 92, 202120 (2008)

    Article  ADS  Google Scholar 

  38. J.B. Varley, J.R. Weber, A. Janotti, C.G. Van de Walle, Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 97, 142106 (2010)

    Article  ADS  Google Scholar 

  39. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 18, 034001 (2016)

    Google Scholar 

  40. Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, T. Luo, Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 106, 111909 (2015)

    Article  ADS  Google Scholar 

  41. H. Sun, C.G. Torres Castanedo, K. Liu, K.H.Li, W. Guo, R. Lin, X. Liu, J. Li, X. Li, Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl. Phys. Lett. 111, 162105 (2017)

    Google Scholar 

  42. W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, G. Zhang, Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy. Nanoscale Res. Lett. 7, 562 (2012)

    Article  ADS  Google Scholar 

  43. K. Nakai, T. Nagai, K. Noami, T. Futagi, Characterization of defects in β-Ga2O3 single crystals. Jpn. J. Appl. Phys. 54, 015201 (2015)

    Article  ADS  Google Scholar 

  44. K. Hanada, T. Moribayashi, T. Uematsu, S. Masuya, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, M. Kasu, Observation of nanometer-sized crystalline grooves in as-grown β-Ga2O3 single crystals. Jpn. J. Appl. Phys. 55, 030303 (2016)

    Article  ADS  Google Scholar 

  45. M. Kasu et al., Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes. Jpn. J. Appl. Phys. 55, 1202BB (2016)

    Google Scholar 

  46. K. Yamaguchi, First principles study on electronic structure of β-Ga2O3. Solid State Commun. 131, 739 (2004)

    Article  ADS  Google Scholar 

  47. H. Peelaers, C.G. Van de Walle, Brillouin zone and band structure of β-Ga2O3. Phys. Status Solidi B 252, 828 (2015)

    Article  ADS  Google Scholar 

  48. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer. Jpn. J. Appl. Phys. 55, 1202B9 (2016)

    Google Scholar 

  49. K. Ghosh, A. Kumar, U. Singisetti, Electrical Properties 2, Springer Series in Materials Science vol. 293 (Springer, Cham, 2020)

    Google Scholar 

  50. A. Parisini, R. Fornari, Analysis of the scattering mechanisms controlling electron mobility in β-Ga2O3 crystals. Semicond. Sci. Technol. 31, 035023 (2016)

    Article  ADS  Google Scholar 

  51. K. Ghosh, U. Singisetti, Ab initio calculation of electron–phonon coupling in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett. 109, 072102 (2016)

    Article  ADS  Google Scholar 

  52. K. Ghosh, U. Singisetti, Ab initio velocity-field curves in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett. 122, 035702 (2017)

    Google Scholar 

  53. N. Ma, A. Verma, Z. Guo, T. Luo, D. Jena, Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 109(21), 212101 (2016)

    Article  ADS  Google Scholar 

  54. Y. Kang, K. Krishnaswamy, H. Peelaers, C.G. Van de Walle, Fundamental limits on the electron mobility of β-Ga2O3. J. Phys. Condens. Matter 29, 234001 (2017)

    Google Scholar 

  55. K. Ghosh, U. Singisetti, Electron mobility in monoclinic β-Ga2O3—effect of plasmon–phonon coupling, anisotropy, and confinement. Appl. Phys. Lett. 122, 035702 (2017)

    Google Scholar 

  56. J.J. Barnes, R.J. Lomax, G.I. Haddad, Finite-element simulation of GaAs MESFET’s with lateral doping profiles and submicron gates. IEEE Trans. Electron Devices 23(9), 1042–1048 (1976)

    Article  ADS  Google Scholar 

  57. D.S. Atlas, Atlas user’s manual. Silvaco International Software, Santa Clara, CA, USA (2016)

    Google Scholar 

  58. A.L. Jaromin, D.D. Edwards, Subsolidus Phase Relationships in the Ga2O3-Al2O3-TiO2. J. Am. Ceram. Soc. 88, 2573 (2005)

    Article  Google Scholar 

  59. D.D. Edwards, P.E. Folkins, T.O. Mason, Phase equilibria in the Ga2O3-In2O3 system. J. Am. Ceram. Soc. 80, 253 (1997)

    Article  Google Scholar 

  60. T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, S. Fujita, (AlxGa1−x)2O3 thin film growth by molecular beam epitaxy. Jpn. J. Appl. Phys. 48, 070202 (2009)

    Article  ADS  Google Scholar 

  61. F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q. Guo, Wide bandgap engineering of (AlGa)2O3 films. Appl. Phys. Lett. 105, 162107 (2014)

    Article  ADS  Google Scholar 

  62. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett. 37(2), 212–215 (2016). https://doi.org/10.1109/LED.2015.2512279

    Article  ADS  Google Scholar 

  63. T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, M. Kasu, Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface. Appl. Phys. Express 10(3), 035701 (2017)

    Article  ADS  Google Scholar 

  64. S.W. Kaun, F. Wu, J.S. Speck, β-(AlxGa1− x)2O3/Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol.A 33, 041508 (2015)

    Article  Google Scholar 

  65. E. Ahmadi, O.S. Koksaldi, X. Zheng, T. Mates, Y. Oshima, U.K. Mishra, J.S. Speck, Demonstration of β-(AlxGa1-x)2O3/β-Ga2O3 modulation-doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy. Appl. Phys. Express 10(7), 071101 (2017)

    Article  ADS  Google Scholar 

  66. S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A.R. Arehart, J. Hwang, S. Lodha, Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor. Appl. Phys. Lett. 111(2), 023502 (2017)

    Google Scholar 

  67. Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, S. Rajan, Demonstration of β-(AlxGa1-x)2O3/Ga2O3 Double Heterostructure Field Effect Transistors. Appl. Phys. Lett. 112, 233503 (2018)

    Article  ADS  Google Scholar 

  68. H. Okumura, Y. Kato, T. Oshima, T. Palacios, Demonstration of lateral field-effect transistors using Sn-doped β-(AlGa)2O3 (010). Jpn. J. Appl. Phys. 58, SBBD12 (2019)

    Google Scholar 

  69. R. Singh, T.R. Lenka, D.K. Panda, R.T. Velpula, B. Jain, H.Q.T. Bui, H.P.T. Nguyen, The dawn of Ga2O3 HEMTs for high power electronics—a review. Mater. Sci. Semicond. Process. 119, 105216 (2020)

    Article  Google Scholar 

  70. A.J. Green, K.D. Chabak, M. Baldini, N. Moser, R.C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, G.H. Jessen, β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett. 38(6), 790 (2017)

    Article  ADS  Google Scholar 

  71. K.D. Chabak, D.E. Walker, A.J. Green, A. Crespo, M. Lindquist, K. Leedy, S. Tetlak, R. Gilbert, N. A. Moser, G. Jessen, Sub-micron gallium oxide radio frequency field-effect transistors, in Proceedings of IEEE IWMS-AMP, pp. 1–3 (2018)

    Google Scholar 

  72. M. Singh et al., Pulsed large-signal RF performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett. 39(10), 1572–1575 (2018)

    Article  ADS  Google Scholar 

  73. N.A. Moser et al.,Pulsed power performance of β-Ga2O3 MOSFETs at L-band.IEEE Electron Device Lett 41(7), 989–992 (2020). https://doi.org/10.1109/LED.2020.2993555

  74. Z. Xia et al., β-Ga2O3 Delta-Doped Field-Effect Transistors With Current Gain Cutoff Frequency of 27 GHz. IEEE Electron Device Lett. 40(7), 1052–1055 (2019). https://doi.org/10.1109/LED.2019.2920366

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This publication is an outcome of the R&D work undertaken by the project under the Visvesvaraya PhD Scheme of Ministry of Electronics and Information Technology (MeitY), Govt. of India, being implemented by Digital India Corporation. Authors also acknowledge DST-SERB (Science and Engineering Research Board), Govt. of India, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Lenka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R. et al. (2021). Ga2O3 Based Heterostructure FETs (HFETs) for Microwave and Millimeter-Wave Applications. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H. (eds) Emerging Trends in Terahertz Engineering and System Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-9766-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9766-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9765-7

  • Online ISBN: 978-981-15-9766-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics