Skip to main content

Flavonoid Infochemicals: Unravelling Insights of Rhizomicrobiome Interactions

  • Chapter
  • First Online:
Microbial Metatranscriptomics Belowground

Abstract

Root exudation consists of several biochemicals which act as the modifier of rhizospheric ecosystem favouring plant growth and development. These biochemicals play a role of signals to call the beneficial microbes towards plant root and deterring the pathogenic species away from the rhizosphere due to which they are also described as “Infochemicals”. Flavonoids are one of the most important infochemicals exudated from various plant roots that help in regulating rhizospheric nutrient status, microbial diversity and biotic and abiotic adaptation etc. owing to their importance and prominence in rhizospheric signalling, they have been studied for their chemistry and mode of action in exudation which resulted in collection of important information related to their synthesis and diversity in plant system as well as their actions in the rhizosphere which are helpful for plants to develop and adapt very stressful conditions due to their associations with PGPRs and other beneficial microorganism communities. Thus, this data collection enables presently what we term “Rhizosphere engineering” and in which flavonoids had an important role to play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Amer A (2018) Biotechnology approaches for in vitro production of flavonoids. J Microbiol Biotechnol Food Sci 7(5):457–468

    CAS  Google Scholar 

  • Ballard CR, Maróstica Junior MR (2019) Health benefits of flavonoids. Bioactive compounds. Health benefits and potential applications, pp 185–201

    Google Scholar 

  • Bouhaouel I, Gaëtan R, Marie-Laure F, Marc O, Laurent F, Aurélie G, Hajer SA, Patrick du J (2019) Identification of Barley (Hordeum vulgare L. subsp. vulgare) root exudates allelochemicals, their autoallelopathic activity and against Bromus diandrus Roth. germination. Agronomy 9:345

    Article  CAS  Google Scholar 

  • Broughton WJ, Zhang F, Perret X, Staehelin C (2003) Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant Soil 252:129–137

    Article  CAS  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2013) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coelho LCS, Mignoni DSB, Silva FSB, Braga MR (2019) Seed exudates of Sesbania virgata (Cav.) Pers. stimulate the asymbiotic phase of the arbuscular mycorrhizal fungus Gigaspora albida Becker & Hall. Hoehnea 46(1):e272018

    Article  Google Scholar 

  • Del Valle I, Webster TM, Cheng HY, Thies JE, Kessler A, Miller MK et al (2020) Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Sci Adv 6:8254

    Article  CAS  Google Scholar 

  • Erlejman AG, Verstraeten SV, Fraga CG, Oteiza PI (2004) The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free Radic Res 38:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Ferdinando MD, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 159–179

    Chapter  Google Scholar 

  • Gargallo-Garriga A, Preece C, Sardans J et al (2018) Root exudate metabolomes change under drought and show limited capacity for recovery. Sci Rep 8:12696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomaa NH, Hassan MO, Fahmy GM, González L, Hammouda O, Atteya AM (2015) Flavonoid profiling and nodulation of some legumes in response to the allelopathic stress of Sonchus oleraceus L. Acta Botanica Brasilica 29(4):553–560

    Article  Google Scholar 

  • Guerrieri A, Dong L, Bouwmeester HJ (2019) Role and exploitation of underground chemical signaling in plants. Pest Manag Sci 75:2455–2463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9):3429–3444

    Article  CAS  PubMed  Google Scholar 

  • He JW, Yang L, Mu ZQ, Zhu YY, Zhong GY, Liu ZY, Zhou QG, Cheng F (2018) Anti-inflammatory and antioxidant activities of flavonoids from the flowers of Hosta plantaginea. RSC Adv 8:18175–18179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann A, Wittenmayer L, Arnold G, Schieber A, Merbach W (2009) Root exudation of phloridzin by apple seedlings (Malus x domestica Borkh.) with symptoms of apple replant disease. J Appl Bot Food Qual 82:193–198

    CAS  Google Scholar 

  • Hooper AM, Tsanuo MK, Chamberlain K, Tittcomb K, Scholes J, Hassanali A, Khan ZR, Pickett JA (2010) Isoschaftoside, a C -glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry 71:904–908

    Article  CAS  PubMed  Google Scholar 

  • Jansen MAK (2002) Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plant 116:423–429

    Article  CAS  Google Scholar 

  • Jiang N, Doseff AI, Grotewold E (2016) Flavones: from biosynthesis to health benefits. Plants (Basel, Switzerland) 5(2):1–25

    Google Scholar 

  • Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo 19(5):895–909

    PubMed  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52(359):1339–1352

    CAS  PubMed  Google Scholar 

  • Kim K, Vance TM, Chun OK (2016) Estimated intake and major food sources of flavonoids among US adults: changes between 1999–2002 and 2007–2010 in NHANES. Eur J Nutr 55:833–843

    Article  CAS  PubMed  Google Scholar 

  • Kirwa HK, Murungi LK, Beck JJ, Torto B (2018) Elicitation of differential responses in the root-knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids. J Agric Food Chem 66(43):11291–11300

    Article  CAS  PubMed  Google Scholar 

  • Kozłowska A, Szostak-Wegierek D (2014) Flavonoids--food sources and health benefits. RoczPanstwZaklHig 65(2):79–85

    Google Scholar 

  • Kozłowska A, Szostak-Węgierek D (2018) Flavonoids – food sources, health benefits, and mechanisms involved. In: Mérillon JM, Ramawat K (eds) Bioactive molecules in food, reference series in phytochemistry. Springer, Cham, pp 1–27

    Google Scholar 

  • Kuhn BM, Geisler M, Bigler L, Ringli C (2011) Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol 156:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 162750:1–16

    Google Scholar 

  • Lateif KA, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Krumbein A, Neugart S, Li L, Schreiner M (2012) Mixed cropping with maize combined with moderate UV-B radiations lead to enhanced flavonoid production and root growth in faba bean. J Plant Interact 7(4):333–340

    Article  CAS  Google Scholar 

  • Li SS, Wu J, Chen LG, Du H, Xu YJ, Wang LJ et al (2014) Biogenesis of C-glycosyl flavones and profiling of flavonoid glycosides in lotus (Nelumbo nucifera). PLoS One 9(10):e108860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Li Y-Y, Hua-Mao W, Zhang F-F, Li C-J, Li X-X, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. PNAS 113(23):6496–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yin X, Xiao J et al (2019) Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean. Sci Rep 9:4818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez M, Martinez F, Del Valle C, Orte C, Miro M (2001) Analysis of phenolic constituents of biological interest in red wines by high-performance liquid chromatography. J Chromatogr A 922(1–2):359–363

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    PubMed  PubMed Central  Google Scholar 

  • Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94(6):1051–1063

    Article  CAS  Google Scholar 

  • Marunaka Y (2017) Actions of quercetin, a flavonoid, on ion transporters: its physiological roles. Ann N Y Acad Sci 1398:142–151

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Exp Bot 52.(Spec Issue:419–426

    Article  CAS  PubMed  Google Scholar 

  • Mehmood A, Hussain A, Irshad M, Khan N, Hamayun M, Ismail SGA, In-Jung L (2018) IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish. J Plant Interact 13(1):532–542

    Article  CAS  Google Scholar 

  • Mullineaux PM, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  CAS  PubMed  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12(12):556–563

    Article  CAS  PubMed  Google Scholar 

  • Pyne ME, Narcross L, Martin VJJ (2019) Engineering plant secondary metabolism in microbial systems. Plant Physiol 179:844–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quecan BXV, Santos JTC, Rivera MLC, Hassimotto NMA, Almeida FA, Pinto UM (2019) Effect of quercetin rich onion extracts on bacterial quorum sensing. Front Microbiol 10:867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raorane CJ, Lee JH, Kim YG, Rajasekharan SK, García-Contreras R, Lee J (2019) Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front Microbiol 10:990

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray S, Mishra S, Bisen K, Singh S, Sarma BK, Singh HB (2018) Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol Res 207:100–107

    Article  CAS  PubMed  Google Scholar 

  • RuizCruz S, Chaparro Hernández S, Hernández Ruiz KL, Cira Chávez LA, Estrada Alvarado MI, Ortega LEG, Ornelas Paz JJ, Lopez Mata MA (2017) Flavonoids: important biocompounds in food, flavonoids - from biosynthesis to human health, Goncalo C. Justino. IntechOpen. https://doi.org/10.5772/67864

  • Shamala T, Thilini AP, Anuradha S, Kulasooriya SA, Seneviratne G (2018) The effect of flavonoid naringenin coupled with the developed biofilm Azorhizobium caulinodans-Aspergillus Spp. on increase in rice yields in conventionally and organically grown rice. Int J Plant Stu 1(1):1–6

    Google Scholar 

  • Singla P, Garg N (2017) Plant flavonoids: key players in signaling, establishment, and regulation of rhizobial and mycorrhizal endosymbioses. Mycorrhiza - function, diversity, state of the art, pp 133–176

    Google Scholar 

  • Soares AMS, Oliveira JTA, Rocha CQ, Ferreira ATS, Perales J, Zanatta AC et al (2018) Myracrodruon urundeuva seed exudates proteome and anthelmintic activity against Haemonchus contortus. PLoS One 13(7):e0200848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szoboszlay M, White-Monsant A, Moe LA (2016) The effect of root exudate 7, 4′-dihydroxyflavone and naringenin on soil bacterial community structure. PLoS One 11(1):e0146555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tadra-Sfeir MZ, Souza EM, Faoro H, Müller-Santos M, Baura VA, Tuleski TR, Rigo LU et al (2011) Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 77(6):2180–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8(3):317–323

    Article  CAS  PubMed  Google Scholar 

  • Thiébaut G, Thouvenot L, Rodríguez-Pérez H (2018) Allelopathic effect of the invasive Ludwigia hexapetala on growth of three macrophyte species. Front Plant Sci 9:1835

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres R, Faini F, Modak B, Urbina F, Labbé C, Guerrero J (2006) Antioxidant activity of coumarins and flavonols from the resinous exudate of Haplopappus multifolius. Phytochemistry 67:984–987

    Article  CAS  PubMed  Google Scholar 

  • Vasavi HS, Arun AB, Rekha PD (2014) Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol 58(5):286–293

    Article  CAS  PubMed  Google Scholar 

  • Verma AK, Pratap R (2010) The biological potential of flavones. Nat Prod Rep 27:1571–1593

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 91:949–956

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhao X, Qiu H (2013) Flavones and flavonols: phytochemistry and biochemistry. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin, pp 1821–1847

    Chapter  Google Scholar 

  • Zhang Q, Zheng X, Lin S et al (2019) Transcriptome analysis reveals that barnyard grass exudates increase the allelopathic potential of allelopathic and non-allelopathic rice (Oryza sativa) accessions. Rice 12:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Dixon RA (2010) The “ins” and “outs” of flavonoid transport. Trends Plant Sci 15:72–80

    Article  CAS  PubMed  Google Scholar 

  • Żuk M, Kulma A, Dymińska L, Szołtysek K, Prescha A, Hanuza J, Szopa J (2011) Flavonoid engineering of flax potentiate its biotechnological application. BMC Biotechnol 11:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zwetsloot MJ, Andre K, Taryn LB (2018) Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol 218:530–541

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The financial and infrastructural support from S D Agricultural University, Gujarat, India is highly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A., Mudila, H., Prasher, P., Verma, S. (2021). Flavonoid Infochemicals: Unravelling Insights of Rhizomicrobiome Interactions. In: Nath, M., Bhatt, D., Bhargava, P., Choudhary, D.K. (eds) Microbial Metatranscriptomics Belowground. Springer, Singapore. https://doi.org/10.1007/978-981-15-9758-9_8

Download citation

Publish with us

Policies and ethics