Skip to main content

Manoeuvring Soil Microbiome and Their Interactions: A Resilient Technology for Conserving Soil and Plant Health

  • 628 Accesses

Abstract

The soil microbial community hugely affects the growth and development of the plants through direct or indirect interactions. The rhizospheric microbial community dwelling in the soil are major drivers of this phenomenon. Manipulation of soil microbial population and community through various treatments of an array of beneficial microbes such as plant growth-promoting rhizobacteria, plant growth-promoting fungi, endophytic bacteria, biocontrol agents, etc. helps in alleviating various abiotic and biotic stresses of the plants. This, in turn, leads to the achievement of the yield which is close to the potential yield of the crop. Apart from increasing the yield of the crop, some of the beneficial microbes also enhance the nutrient content in the soil and availability of certain minerals to the plants eventually leading to conservation of soil health. Thus, manipulation of plant–soil microbiome paves the way for sustainable and green agriculture without imparting excessive monetary expenses, thereby creating increased crop production and embellishment of soil health. This chapter will so focus on the strategies and methods that are adopted to manipulate the plant–soil microbiome interactions, various mechanisms that are involved in the interactions, and the impact of this technology on the plant and soil.

Keyword

  • PGPR
  • Soil health
  • Soil microbiome

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-9758-9_19
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-9758-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 19.1

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (2012) Ethylene in plant biology. Academic, New York

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, Burlington, pp 79–103

    Google Scholar 

  • Aislabie J, Deslippe JR, Dymond J (2013) Soil microbes and their contribution to soil services. Ecosystem services in New Zealand–conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  • Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105(Suppl 1):11512–11519

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. In: Invertebrate biodiversity as bioindicators of sustainable landscapes. Elsevier, London, pp 19–31

    CrossRef  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:6235

    CrossRef  CAS  Google Scholar 

  • Annapurna K, Kumar A, Kumar LV, Govindasamy V, Bose P, Ramadoss D (2013) PGPR-induced systemic resistance (ISR) in plant disease management. In: Bacteria in agrobiology: disease management. Springer, Berlin, pp 405–425

    CrossRef  Google Scholar 

  • Armada E, Azcón R, López-Castillo OM, Calvo-Polanco M, Ruiz-Lozano JM (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362

    CAS  PubMed  CrossRef  Google Scholar 

  • Attwood GT, Wakelin SA, Leahy SC, Rowe S, Clarke SM, Chapman DF, Muirhead, R.,& Jacobs, J. M. (2019) Applications of the soil, plant and rumen microbiomes in pastoral agriculture. Front Nutr 6:107

    Google Scholar 

  • Azeem M, Riaz A, Chaudhary AN, Hayat R, Hussain Q, Tahir MI, Imran M (2015) Microbial phytase activity and their role in organic P mineralization. Arch Agron Soil Sci 61(6):751–766

    CAS  CrossRef  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian, S.,& Smith, D. L. (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    CAS  PubMed  CrossRef  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  CrossRef  Google Scholar 

  • Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505–511

    CAS  PubMed  CrossRef  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci 115(25):6506–6511

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Bashiardes S, Godneva A, Elinav E, Segal E (2018) Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol 51:57–63. https://doi.org/10.1016/j.copbio.2017.11.013

    CAS  CrossRef  PubMed  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39(3):311–320

    CrossRef  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    CAS  CrossRef  PubMed  Google Scholar 

  • Berlanas C, Berbegal M, Elena G, Laidani M, Cibriain JF, Sagües A, Gramaje D (2019) The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front Microbiol 10:1142

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bever JD, Mangan SA, Alexander HM (2015) Maintenance of plant species diversity by pathogens. Annu Rev Ecol 46:305–325

    CrossRef  Google Scholar 

  • Bhat TA, Ahmad L, Ganai MA, Khan OA (2015) Nitrogen fixing biofertilizers; mechanism and growth promotion: a review. J Pure Appl Microbiol 9(2):1675–1690

    CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    CAS  PubMed  CrossRef  Google Scholar 

  • Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56:1–20

    CAS  PubMed  CrossRef  Google Scholar 

  • Brust J, Claupein W, Gerhards R (2014) Growth and weed suppression ability of common and new cover crops in Germany. Crop Prot 63:1–8

    CrossRef  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    CAS  PubMed  CrossRef  Google Scholar 

  • Calderón K, Spor A, Breuil MC, Bru D, Bizouard F, Violle C, Barnard RL, Philippot L (2017) Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J 11(1):272–283

    PubMed  CrossRef  CAS  Google Scholar 

  • Callaway E (2016) Devastating wheat fungus appears in Asia for first time. Nat News 532(7600):421

    CrossRef  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci 104(12):4990–4995

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Casanovas EM, Barassi C, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. JSTOR 30:343–350

    Google Scholar 

  • Castellano-Hinojosa A, Strauss SL (2020) Impact of cover crops on the soil microbiome of tree crops. Microorganisms 8(3):328

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20(5):283–290

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48(5):489–499

    CrossRef  Google Scholar 

  • Charubin K, Papoutsakis ET (2019) Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space. Metab Eng 52:9–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta SK, Joner E (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment (15 pp). Environ Sci Pollut Res 12(1):34–48

    CAS  CrossRef  Google Scholar 

  • Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA, Ortega CN, Sauer EL, Sehgal T, Young S, Rohr JR (2015) Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci 112(28):8667–8671

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier, Burlington

    Google Scholar 

  • Colombo C, Palumbo G, He JZ, Pinton R, Cesco S (2014) Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments 14(3):538–548

    CAS  CrossRef  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73(2):197–214

    CAS  PubMed  Google Scholar 

  • Cordeau S, Guillemin JP, Reibel C, Chauvel B (2015) Weed species differ in their ability to emerge in no-till systems that include cover crops. Ann Appl Biol 166(3):444–455

    CrossRef  Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466(7302):109–112

    CAS  PubMed  CrossRef  Google Scholar 

  • Crowley DE, Reid CP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87(3):680–685

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci 99(16):10494–10499

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • da Silva CR, Silva MLC, Kamida HM, Goes-Neto A, Koblitz MGB (2014) Lytic enzyme production optimization using low-cost substrates and its application in the clarification of xanthan gum culture broth. Food Sci Nutr 2(4):299–307

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • De Angelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3(2):168–178

    CAS  CrossRef  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32(2):189–196

    CAS  CrossRef  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33(9):1143–1153

    CAS  CrossRef  Google Scholar 

  • Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28(8-9):2405–2429

    CrossRef  Google Scholar 

  • Fanin N, Hättenschwiler S, Fromin N (2014) Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil. Plant Soil 379(1-2):79–91

    CAS  CrossRef  Google Scholar 

  • FAO (2017) World fertilizer trends and outlook to 2020

    Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10):579

    CAS  PubMed  CrossRef  Google Scholar 

  • Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int J Med Microbiol 300(6):357–362

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

    CAS  PubMed  CrossRef  Google Scholar 

  • Friskop A, Markell SG, Gulya T (2009). Downy mildew of sunflower

    Google Scholar 

  • Frisli T, Haverkamp THA, Jakobsen KS, Stenseth NC, Rudi K (2013) Estimation of metagenome size and structure in an experimental soil microbiota from low coverage next-generation sequence data. J Appl Microbiol 114(1):141–151

    CAS  PubMed  CrossRef  Google Scholar 

  • Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13(3):133–146

    CAS  PubMed  CrossRef  Google Scholar 

  • Garbeva PV, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    CAS  PubMed  CrossRef  Google Scholar 

  • Genin S, Boucher C (2004) Lessons learned from the genome analysis of Ralstonia solanacearum. Annu Rev Phytopathol 42:107–134

    CAS  PubMed  CrossRef  Google Scholar 

  • Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends Microbiol 24(10):833–845

    CAS  PubMed  CrossRef  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    CAS  PubMed  CrossRef  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    CrossRef  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    CAS  PubMed  CrossRef  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting Rhizobacteria research. Springer, Dordrecht, pp 329–339

    CrossRef  Google Scholar 

  • Gold MV (2007) Organic production/organic food: information access tools. Organic Production and Organic Food: Information Access Tools

    Google Scholar 

  • Goodrich JK, Davenport ER, Clark AG, Ley RE (2017) The relationship between the human genome and microbiome comes into view. Annu Rev Genet 51:413–433. https://doi.org/10.1146/annurev-genet-110711-155532

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37(2):112–129

    CAS  PubMed  CrossRef  Google Scholar 

  • Groff S (2015) The past, present, and future of the cover crop industry. J Soil Water Conserv 70(6):130–133

    CrossRef  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48(1):743–772

    CAS  PubMed  CrossRef  Google Scholar 

  • Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 15(12):797–813

    CAS  PubMed  CrossRef  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41(1):117–153

    CAS  PubMed  CrossRef  Google Scholar 

  • Hamel C, Vujanovic V, Jeannotte R, Nakano-Hylander A, St-Arnaud M (2005) Negative feedback on a perennial crop: Fusarium crown and root rot of asparagus is related to changes in soil microbial community structure. Plant Soil 268(1):75–87

    CAS  CrossRef  Google Scholar 

  • Hicks N, Vik U, Taylor P, Ladoukakis E, Park J, Kolisis F, Jakobsen KS (2017) Using prokaryotes for carbon capture storage. Trends Biotechnol 35:22–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    CAS  PubMed  CrossRef  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321(1-2):117–152

    CAS  CrossRef  Google Scholar 

  • Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramirez D, Bucherr M, O’Connel RJ, Schulze-Lefert P (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165(2):464–474

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hodgson D, McDonald JL, Hosken DJ (2015) What do you mean, ‘resilient’? Trends Ecol Evol 30(9):503–506

    PubMed  CrossRef  Google Scholar 

  • Hubbard RK, Strickland TC, Phatak S (2013) Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA. Soil Tillage Res 126:276–283

    CrossRef  Google Scholar 

  • Hunter PJ, Teakle G, Bending GD (2014) Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. Front Plant Sci 5:27

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jain S, Vaishnav A, Kumari S et al (2017) Chitinolytic bacillus-mediated induction of jasmonic acid and defense-related proteins in soybean (Glycine max L. Merrill) plant against Rhizoctonia solani and Fusarium oxysporum. J Plant Growth Regul 36:200–214. https://doi.org/10.1007/s00344-016-9630-1

    CAS  CrossRef  Google Scholar 

  • Jansson JK, Hofmockel KS (2018) The soil microbiome—from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168

    CAS  PubMed  CrossRef  Google Scholar 

  • Jansson JK, Hofmockel KS (2019) Soil microbiomes and climate change. Nat Rev Microbiol 2019:1–12

    Google Scholar 

  • Jansson C, Vogel J, Hazen S, Brutnell T, Mockler T (2018) Climate-smart crops with enhanced photosynthesis. J Exp Bot 69(16):3801–3809

    CAS  PubMed  CrossRef  Google Scholar 

  • Jiao S, Chen W, Wei G (2019) Resilience and assemblage of soil microbiome in response to chemical contamination combined with plant growth. Appl Environ Microbiol 85(6):e02523

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jin CW, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 29(5):888–897

    PubMed  CrossRef  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5(8):619–633

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kaestli M, Schmid M, Mayo M, Rothballer M, Harrington G, Richardson L, Hill A, Hill J, Tuanyok A, Keim P, Hartmann A (2012) Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ Microbiol 14(8):2058–2070

    PubMed  CrossRef  Google Scholar 

  • Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Soil heavy metals. Springer, Berlin, pp 31–63

    CrossRef  Google Scholar 

  • Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biol Res 51:4

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389(6646):33–39

    CAS  CrossRef  Google Scholar 

  • Khan A, Sharif M, Ali A, Shah SNM, Mian IA, Wahid F, Jan B, Adnan M, Ali N (2014) Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. Am J Plant Sci 5:1578–1586

    CrossRef  CAS  Google Scholar 

  • Khan AL, Asaf S, Abed RM, Ning Chai Y, Al-Rawahi AN, Mohanta TK, Al-Rawahi A, Schachtman DP, Al-Harrasi A (2020) Rhizosphere microbiome of arid land medicinal plants and extra cellular enzymes contribute to their abundance. Microorganisms 8(2):213

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33(2):389–397

    CAS  PubMed  CrossRef  Google Scholar 

  • Kingston-Smith AH, Davies TE, Edwards JE, Theodorou MK (2008) From plants to animals; the role of plant cell death in ruminant herbivores. J Exp Bot 59(3):521–532

    CAS  PubMed  CrossRef  Google Scholar 

  • Kloepper JW, Gutierrez-Estrada A, McInroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53(2):159–167

    CAS  PubMed  CrossRef  Google Scholar 

  • Köhl L, Oehl F, van der Heijden MG (2014) Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol Appl 24(7):1842–1853

    PubMed  CrossRef  Google Scholar 

  • Krauss J, Gallenberger I, Steffan-Dewenter I (2011) Decreased functional diversity and biological pest control in conventional compared to organic crop fields. PLoS One 6(5):e0019502

    CrossRef  CAS  Google Scholar 

  • Kumar A, Sharma S, Mishra S, Dames JF (2015) Arbuscular mycorrhizal inoculation improves growth and antioxidative response of Jatropha curcas (L.) under Na2SO4 salt stress. Plant Biosyst 149(2):260–269

    CrossRef  Google Scholar 

  • Kumar G, Patel JS, Maharshi A, Mukherjee A, Keswani C, Singh SP, Singh HB, Sarma BK (2017) PGPR-mediated defence responses in plants under biotic and abiotic stresses. Adv PGPR Res 2017:427

    Google Scholar 

  • Kuo S, Sainju UM (1998) Nitrogen mineralization and availability of mixed leguminous and non-leguminous cover crop residues in soil. Biol Fertil Soils 26(4):346–353

    CAS  CrossRef  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166(2):689–700

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lakshmanan V, Ray P, Craven KD (2017) Toward a resilient, functional microbiome: drought tolerance-alleviating microbes for sustainable agriculture. In: Plant stress tolerance. Humana Press, New York, pp 69–84

    CrossRef  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    CAS  PubMed  CrossRef  Google Scholar 

  • Lal R (2009) Soils and food sufficiency: a review. In: Sustainable agriculture. Springer, Dordrecht, pp 25–49

    CrossRef  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321(1-2):83–115

    CAS  CrossRef  Google Scholar 

  • Lebeis SL (2015) Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol 24:82–86

    CAS  PubMed  CrossRef  Google Scholar 

  • Lebeis SL, Rott M, Dangl JL, Schulze-Lefert P (2012) Culturing a plant microbiome community at the cross-Rhodes. New Phytol 196(2):341–344

    PubMed  CrossRef  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349(6250):860–864

    CAS  PubMed  CrossRef  Google Scholar 

  • Lemanceau P, Expert D, Gaymard F, Bakker PA, Briat JF (2009) Role of iron in plant–microbe interactions. Adv Bot Res 51:491–549

    CAS  CrossRef  Google Scholar 

  • Lidbury ID, Murphy AR, Scanlan DJ, Bending GD, Jones AM, Moore JD, Goodall A, Hammond, J. P.,& Wellington, E. M. (2016) Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria. Environ Microbiol 18(10):3535–3549

    Google Scholar 

  • Liu B, Tu C, Hu S, Gumpertz M, Ristaino JB (2007) Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl Soil Ecol 37(3):202–214

    CrossRef  Google Scholar 

  • Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME (2019) Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol 19(1):1–19

    CrossRef  Google Scholar 

  • Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8(4):480–487

    CAS  PubMed  CrossRef  Google Scholar 

  • Lortal S, Chapot-Chartier MP (2005) Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int Dairy J 15(6-9):857–871

    CAS  CrossRef  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    CAS  CrossRef  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Maharshi A, Kumar G, Mukherjee A, Raghuwanshi R, Singh HB, Sarma BK (2019) Arbuscular mycorrhizal colonization and activation of plant defense responses against phytopathogens. In: Microbial interventions in agriculture and environment. Springer, Singapore, pp 219–240

    CrossRef  Google Scholar 

  • Mahmud K, Makaju S, Ibrahim R, Missaoui A (2020) Current progress in nitrogen fixing plants and microbiome research. Plants 9(1):97

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Maier MR, Pepper LI, Gerba PC (2009) Environmental microbiology, 2nd edn. Elsevier, London

    Google Scholar 

  • Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14(1):36–41

    PubMed  CrossRef  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18(2):49–53

    CAS  PubMed  CrossRef  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3(8):977–991

    CAS  PubMed  CrossRef  Google Scholar 

  • Mazzola M, Manici LM (2012) Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol 50:45–65

    CAS  PubMed  CrossRef  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    CAS  PubMed  CrossRef  Google Scholar 

  • Mimmo T, Del Buono D, Terzano R, Tomasi N, Vigani G, Crecchio C, Pinton R, Cesco S (2014) Rhizospheric organic compounds in the soil–microorganism–plant system: their role in iron availability. Eur J Soil Sci 65(5):629–642

    CAS  CrossRef  Google Scholar 

  • Mirete S, De Figueras CG, González-Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73(19):6001–6011

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Moe LA (2013) Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100(9):1692–1705

    CAS  PubMed  CrossRef  Google Scholar 

  • Moreno B, Garcia-Rodriguez S, Cañizares R, Castro J, Benítez E (2009) Rainfed olive farming in south-eastern Spain: long-term effect of soil management on biological indicators of soil quality. Agric Ecosyst Environ 131(3-4):333–339

    CrossRef  Google Scholar 

  • Mukherjee A, Gaurav AK, Singh S, Chouhan GK, Kumar A, Das S (2019) Role of potassium (K) solubilising microbes (KSM) in growth and induction of resistance against biotic and abiotic stress in plant: a book review. Clim Change Environ Sustainability 7(2):212–214

    Google Scholar 

  • Mukherjee A, Singh B, Verma JP (2020) Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol Res 2020:126469

    CrossRef  CAS  Google Scholar 

  • Muleta D (2017) Legume response to arbuscular mycorrhizal fungi inoculation in sustainable agriculture. In: Microbes for legume improvement. Springer, Cham, pp 227–260

    CrossRef  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2017) Microbial diversity and soil functions. Eur J Soil Sci 68(1):12–26

    CAS  CrossRef  Google Scholar 

  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1(1):27–46

    CAS  PubMed  CrossRef  Google Scholar 

  • Nester E, Gordon MP, Kerr A (2005) Agrobacterium tumefaciens: from plant pathology to biotechnology. American Phytopathological Society (APS Press)

    Google Scholar 

  • Nkongolo KK, Narendrula-Kotha R (2020) Advances in monitoring soil microbial community dynamic and function. J Appl Genet 2020:1–15

    Google Scholar 

  • Ofaim S, Ofek-Lalzar M, Sela N, Jinag J, Kashi Y, Minz D, Freilich S (2017) Analysis of microbial functions in the rhizosphere using a metabolic-network based framework for metagenomics interpretation. Front Microbiol 8:1606

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ohbuchi K, Hasegawa K, Hamachi M, Ozeki K, Kumagai C (2001) Isolation of a new lytic enzyme for hiochi bacteria and other lactic acid bacteria. J Biosci Bioeng 91(5):487–492

    CAS  PubMed  CrossRef  Google Scholar 

  • Oliveira H, Azeredo J, Lavigne R, Kluskens LD (2012) Bacteriophage endolysins as a response to emerging foodborne pathogens. Trends Food Sci Technol 28(2):103–115

    CAS  CrossRef  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2(6):a001537

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35(3):877–902

    CAS  CrossRef  Google Scholar 

  • Patel J, Teli B, Bajpai R, Meher J, Rashid M, Mukherjee A, Yadav SK (2019) Trichoderma-mediated biocontrol and growth promotion in plants: an endophytic approach. In: Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Woodhead Publishing, Cambridge, pp 219–239

    CrossRef  Google Scholar 

  • Patel JS, Yadav SK, Bajpai R, Teli B, Rashid M (2020) PGPR secondary metabolites: an active syrup for improvement of plant health. In: Molecular aspects of plant beneficial microbes in agriculture. Academic, New York, pp 195–208

    CrossRef  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin, and DDT by soil microorganisms. Appl Environ Microbiol 19(5):879–881

    CAS  CrossRef  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol 14(7):434–447

    CAS  PubMed  CrossRef  Google Scholar 

  • Peng J, Ji W, Ma Z, Li S, Chen S, Zhou L, Shi Z (2016) Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers. Biosyst Eng 152:94–103

    CrossRef  Google Scholar 

  • Pereyra MA, García P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97

    CrossRef  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    CAS  PubMed  CrossRef  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51(4):403–415

    CAS  CrossRef  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, Tran Q, Saltman, T.,& Cliff, B. (1997) Economic and environmental benefits of biodiversity. Bioscience 47(11):747–757

    Google Scholar 

  • Pires AC, Cleary DF, Almeida A, Cunha Â, Dealtry S, Mendonça-Hagler LC, Smalla K, Gomes NC (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 78(16):5520–5528

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Prabha R, Singh DP, Yadav SK (2019) Seed biopriming with potential microbial inoculants as sustainable options for stress management in crops. In: Microbial interventions in agriculture and environment. Springer, Singapore, pp 211–224

    CrossRef  Google Scholar 

  • Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat Rev Microbiol 13(7):439–446

    CAS  PubMed  CrossRef  Google Scholar 

  • Qiu X, Kulasekara BR, Lory S (2009) Role of horizontal gene transfer in the evolution of Pseudomonas aeruginosa virulence. In: Microbial pathogenomics, vol 6. Karger Publishers, Basel, pp 126–139

    CrossRef  Google Scholar 

  • Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM (2017) Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci 8:1056

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ramana KV, Singh L (2000) Microbial degradation of organic wastes at low temperatures. Def Sci J 50(4):371

    CAS  CrossRef  Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225

    CAS  CrossRef  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    CAS  PubMed  CrossRef  Google Scholar 

  • Romdhane S, Spor A, Busset H, Falchetto L, Martin J, Bizouard F, Bru D, Breuil MC, Philippot, L.,& Cordeau, S. (2019) Cover crop management practices rather than composition of cover crop mixtures affect bacterial communities in no-till agroecosystems. Front Microbiol 10:1618

    Google Scholar 

  • Roper MM, Gupta VVSR (1995) Management-practices and soil biota. Soil Res 33(2):321–339

    CrossRef  Google Scholar 

  • Rout ME, Southworth D (2013) The root microbiome influences scales from molecules to ecosystems: the unseen majority. Am J Bot 100(9):1689–1691

    PubMed  CrossRef  Google Scholar 

  • Sachdev DP, Chaudhari HG, Kasture VM, Dhavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47(12):993–1000

    CAS  PubMed  Google Scholar 

  • Salazar O, Asenjo JA (2007) Enzymatic lysis of microbial cells. Biotechnol Lett 29(7):985–994

    CAS  PubMed  CrossRef  Google Scholar 

  • Sandhu HS, Wratten SD, Cullen R, Case B (2008) The future of farming: the value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol Econ 64(4):835–848

    CrossRef  Google Scholar 

  • Sandhu HS, Gupta VV, Wratten SD (2010) Evaluating the economic and social impact of soil microbes. In: Soil microbiology and sustainable crop production. Springer, Dordrecht, pp 399–417

    CrossRef  Google Scholar 

  • Scagliola M, Pii Y, Mimmo T, Cesco S, Ricciuti P, Crecchio C (2016) Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol Biochem 107:187–196

    CAS  PubMed  CrossRef  Google Scholar 

  • Schipanski ME, Barbercheck M, Douglas MR, Finney DM, Haider K, Kaye JP, White C (2014) A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric Syst 125:12–22

    CrossRef  Google Scholar 

  • Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25(1):339–358

    CrossRef  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28(3):212–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Schlatter DC, Bakker MG, Bradeen JM, Kinkel LL (2015) Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 96(1):134–142

    PubMed  CrossRef  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:7

    CrossRef  CAS  Google Scholar 

  • Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K (2018) Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS One 13(2):e0192953

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Selwyn S (1981) Microbial interactions and antibiosis. In: Skin microbiology. Springer, New York, pp 63–74

    CrossRef  Google Scholar 

  • Sergaki C, Lagunas B, Lidbury I, Gifford ML, Schäfer P (2018) Challenges and approaches in microbiome research: from fundamental to applied. Front Plant Sci 9:1205

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1):587

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77(3):600–610

    CAS  PubMed  CrossRef  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect 3(4):a001438

    Google Scholar 

  • Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14(1):130

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sugiyama A, Vivanco JM, Jayanty SS, Manter DK (2010) Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis 94(11):1329–1335

    CAS  PubMed  CrossRef  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356(1-2):35–49

    CrossRef  CAS  Google Scholar 

  • Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4(8):989–1001

    PubMed  CrossRef  Google Scholar 

  • Teplitski M, Warriner K, Bartz J, Schneider KR (2011) Untangling metabolic and communication networks: interactions of enterics with phytobacteria and their implications in produce safety. Trends Microbiol 19(3):121–127

    CAS  PubMed  CrossRef  Google Scholar 

  • Terrazas RA, Giles C, Paterson E, Robertson-Albertyn S, Cesco S, Mimmo T, Pii Y, Bulgarelli D (2016) Plant–microbiota interactions as a driver of the mineral turnover in the rhizosphere. In: Advances in applied microbiology, vol 95. Academic, New York, pp 1–67

    Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102(3):3366–3372

    CAS  PubMed  CrossRef  Google Scholar 

  • Torres-Cortés G, Millán V, Fernández-González AJ, Aguirre-Garrido JF, Ramírez-Saad HC, Fernández-López M, Martínez-Abarca F (2012) Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing. Plant Soil 357(1-2):275–288

    CrossRef  CAS  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5(3):240–245

    CAS  PubMed  CrossRef  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31(2):154–165

    CAS  PubMed  CrossRef  Google Scholar 

  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2(2):281–288

    CAS  PubMed  CrossRef  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye, F.,& Prigent-Combaret, C. (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Google Scholar 

  • Vaishnav A, Jain S, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2014) Molecular mechanism of benign microbe-elicited alleviation of biotic and abiotic stresses for plants. In: Gaur R, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9-16

    CrossRef  Google Scholar 

  • Vaishnav A, Hansen AP, Agrawal PK, Varma A, Choudhary DK (2017) Biotechnological perspectives of legume–rhizobium symbiosis. In: Hansen A, Choudhary D, Agrawal P, Varma A (eds) Rhizobium biology and biotechnology. Soil biology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_12

    CrossRef  Google Scholar 

  • Vaishnav A, Kasotia A, Choudhary DK (2018) Role of functional bacterial phylum proteobacteria in Glycine max growth promotion under abiotic stress: a glimpse on case study. In: Choudhary D, Kumar M, Prasad R, Kumar V (eds) In silico approach for sustainable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-0347-0_2

    CrossRef  Google Scholar 

  • Vaishnav A, Shukla AK, Sharma A et al (2019) Endophytic bacteria in plant salt stress tolerance: current and future prospects. J Plant Growth Regul 38:650–668

    CAS  CrossRef  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    PubMed  CrossRef  Google Scholar 

  • Van der Heijden MGA, de Bruin S, Luckerhoff L et al (2015) A widespread plant–fungal–bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic induced resistance by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  CrossRef  Google Scholar 

  • Verhagen BW, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CM (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17(8):895–908

    CAS  PubMed  CrossRef  Google Scholar 

  • von Wirén-Lehr S, Scheunert I, Dörfler U (2002) Mineralization of plant-incorporated residues of 14C-isoproturon in arable soils originating from different farming systems. Geoderma 105(3-4):351–366

    CrossRef  Google Scholar 

  • Vorholt JA, Vogel C, Carlström CI, Müller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22(2):142–155

    CAS  PubMed  CrossRef  Google Scholar 

  • Vukicevich E, Lowery T, Bowen P, Úrbez-Torres JR, Hart M (2016) Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron Sustain Dev 36(3):48

    CrossRef  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    PubMed  CrossRef  Google Scholar 

  • Vyas P, Kumar D, Dubey A, Kumar A (2018) Screening and characterization of Achromobacter xylosoxidans isolated from rhizosphere of Jatropha curcas L.(energy crop) for plant-growth-promoting traits. J Adv Res Biotechnol 3(1):1–8

    Google Scholar 

  • Waksman SA (1947) What is an antibiotic or an antibiotic substance? Mycologia 39(5):565–569

    CAS  PubMed  CrossRef  Google Scholar 

  • Wallenstein MD (2017) Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3:230–232

    CrossRef  Google Scholar 

  • Walter A, Römheld V, Marschner H, Crowley DE (1994) Iron nutrition of cucumber and maize: effect of Pseudomonas putida YC 3 and its siderophore. Soil Biol Biochem 26(8):1023–1031

    CAS  CrossRef  Google Scholar 

  • Wang Q, Ma M, Jiang X, Zhou B, Guan D, Cao F, Chen S, Li J (2019) Long-term N fertilization altered 13C-labeled fungal community composition but not diversity in wheat rhizosphere of Chinese black soil. Soil Biol Biochem 135:117–126

    CAS  CrossRef  Google Scholar 

  • Wei X, Wang X, Cao P, Gao Z, Chen AJ, Han J (2020) Microbial community changes in the rhizosphere soil of healthy and rusty Panax ginseng and discovery of pivotal fungal genera associated with rusty roots. Biomed Res Int 2020:8018525

    PubMed  PubMed Central  Google Scholar 

  • Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen, G.,& Smalla, K. (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75(3):497–506

    Google Scholar 

  • Werner GD, Cornwell WK, Sprent JI, Kattge J, Kiers ET (2014) A single evolutionary innovation drives the deep evolution of symbiotic N 2-fixation in angiosperms. Nat Commun 5(1):1–9

    CrossRef  CAS  Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88(6):860–866

    CrossRef  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(suppl_1):487–511

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilpiszeski RL, Aufrecht JA, Retterer ST, Sullivan MB, Graham DE, Pierce EM, Elias DA (2019) Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl Environ Microbiol 85(14):e00324–e00319

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wortman SE, Francis CA, Bernards ML, Drijber RA, Lindquist JL (2012) Optimizing cover crop benefits with diverse mixtures and an alternative termination method. Agron J 104(5):1425–1435

    CrossRef  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32(2):67–71

    CAS  CrossRef  Google Scholar 

  • Yadav SK, Prabha R, Singh V, Bajpai R, Teli B, Rashid MM, Sarma BK, Singh DP (2019) Microbes-mediated nutrient use efficiency in pulse crops. In: Microbial interventions in agriculture and environment. Springer, Singapore, pp 447–460

    CrossRef  Google Scholar 

  • Zavala-Gonzalez EA, Rodríguez-Cazorla E, Escudero N, Aranda-Martinez A, Martínez-Laborda A, Ramírez-Lepe M, Lopez-Llorca LV (2017) Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signaling and leads to accelerated flowering and improved yield. New Phytol 213(1):351–364

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rashid, M.M., Akhtar, N., Teli, B., Bajpai, R., Vaishnav, A. (2021). Manoeuvring Soil Microbiome and Their Interactions: A Resilient Technology for Conserving Soil and Plant Health. In: Nath, M., Bhatt, D., Bhargava, P., Choudhary, D.K. (eds) Microbial Metatranscriptomics Belowground. Springer, Singapore. https://doi.org/10.1007/978-981-15-9758-9_19

Download citation