Skip to main content

Detail Study of Different Algorithms for Early Detection of Cancer

  • Chapter
  • First Online:
Health Informatics: A Computational Perspective in Healthcare

Part of the book series: Studies in Computational Intelligence ((SCI,volume 932))

Abstract

Cancer is one of the most dangerous disease in human life. Diagnosing the cancer cell in early stages plays an important (valuable) role in saving human life and for successful treatment. At an early stage the spreading of cancer cells of the body can be stopped by removing the benign cells (cancer cells in the early stage). Whereas, malignant tumor (cancer cells in later stages) which are having aggressive spreading capacity, affects different other parts of the body and cannot be controlled. This paper presents a study on five different types of cancer viz., breast, brain, lung, liver and skin; and different published techniques of detecting these cancers, which help the students (researcher) to understand the current ongoing techniques and aids to develop new structure that gives better and accurate result. It also focuses on different segmentation (ACM, PSO, UNet, watershed etc), cancer feature extraction, cancer features reduction (PCA, LDA, SVD). Also, it discusses different cancer classification using machine learning and clustering (SVM, KNN, Bayesian, Neuro fuzzy, k-mean algorithm, GANs etc.), deep learning (CNN, ResNet, VGG etc) technique, also discuss about different evaluating method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis, C. P., MedicineNet:Cancer 29-1-2019.

    Google Scholar 

  2. News-room. World Health Organization; 12 September 2018

    Google Scholar 

  3. Agarwal, R., Diaz, O., Lladó, X., Yap, M. H., & Martí, R. (2019). Automatic mass detection in mammograms using deep convolutional neural networks. Journal of Medical Imaging, 6(3), 031409.

    Article  Google Scholar 

  4. Li, H., Zhuang, S., Li, D., Zhao, J., & Ma, Y. (2019). Benign and malignant classification of mammogram images based on deep learning. Biomedical Signal Processing and Control, 51, 347–354.

    Article  Google Scholar 

  5. Saba, T., Khan, S. U., Islam, N., Abbas, N., Rehman, A., Javaid, N., et al. (2019). Cloud-based decision support system for the detection and classification of malignant cells in breast cancer using breast cytology images. Microscopy Research and Technique.

    Google Scholar 

  6. Li, Y., Junmin, W., & Qisong, W. (2019). Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning. IEEE Access, 7, 21400–21408.

    Article  Google Scholar 

  7. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., et al. (2017). Classification of breast cancer histology images using convolutional neural networks. PloS One, 12(6), e0177544.

    Article  Google Scholar 

  8. Delshi Howsalya Devi, R., & Indra Devi, M. (2016, April–June). Outlier detection algorithm combined with decision tree classifier for early diagnosis of breast cancer. International Journal of Advanced Engineering Technology, 93, 98.

    Google Scholar 

  9. Zemouri, R., Omri, N., Devalland, C., Arnould, L., Morello, B., Zerhouni, N., et al. (2018). Breast cancer diagnosis based on joint variable selection and Constructive Deep Neural Network. In 2018 IEEE 4th Middle East Conference on Biomedical Engineering (MECBME) (pp. 159–164). New York: IEEE.

    Google Scholar 

  10. Shenbagavalli, P., & Thangarajan, R. (2018). Aiding the digital mammogram for detecting the breast cancer using Shearlet transform and neural network. Asian Pacific Journal of Cancer Prevention: APJCP, 19(9), 2665.

    Google Scholar 

  11. Ting, F. F., Tan, Y. J., & Sim, K. S. (2019). Convolutional neural network improvement for breast cancer classification. Expert Systems with Applications, 120, 103–115.

    Article  Google Scholar 

  12. Khan, S. U., Islam, N., Jan, Z., Ud Din, I., & Rodrigues, J. J. P. C. (2019). A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognition Letters.

    Google Scholar 

  13. http://www.medinfo.cs.ucy.ac.cy/index.php/32-software/218-datasets.

  14. Ahammed Muneer, K. V., & Paul Joseph, K. (2019). Automation of MR brain image classification for malignancy detection. Journal of Mechanics in Medicine and Biology, 19(01), 1940002.

    Article  Google Scholar 

  15. Ayadi, W., Elhamzi, W., Charfi, I., & Atri, M. (2019). A hybrid feature extraction approach for brain MRI classification based on Bag-of-words. Biomedical Signal Processing and Control, 48, 144–152.

    Article  Google Scholar 

  16. Natarajan, A., & Kumarasamy, S. (2019). Efficient segmentation of brain tumor using FL-SNM with a metaheuristic approach to optimization. Journal of Medical Systems, 43(2), 25.

    Article  Google Scholar 

  17. Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A., & Baik, S. W. (2019). Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of Computational Science, 30, 174–182.

    Article  Google Scholar 

  18. Zacharaki, E. I., Wang, S., Chawla, S., Yoo, D. S., Wolf, R., Melhem, E. R., et al. (2009). Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 62(6), 1609–1618.

    Article  Google Scholar 

  19. Sriramakrishnan, P., Kalaiselvi, T., & Rajeswaran, R. (2019). Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine. Biocybernetics and Biomedical Engineering, 39(2), 470–487.

    Article  Google Scholar 

  20. Ali, A. H., Al-hadi, S. A., Naeemah, M. R., & Mazher, A. N. (2019). Classification of brain lesion using K-nearest neighbor technique and texture analysis. Journal of Physics: Conference Series, 1178(1), 012018 (IOP Publishing) .

    Google Scholar 

  21. Vishnuvarthanan, G., & Rajasekaran, M. P. (2013). Segmentation of MR brain images for tumor extraction using fuzzy. Current Medical Imaging Reviews, 9(1), 2–6.

    Article  Google Scholar 

  22. Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., & Zhu, Y. (2011). Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Computer Vision and Image Understanding, 115(2), 256–269.

    Article  Google Scholar 

  23. Sing, J. K., Adhikari, S. K., & Basu, D. K. (2015). A modified fuzzy C-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise. Journal of Chemometrics, 29(9), 492–505.

    Article  Google Scholar 

  24. Usha, R., & Perumal, K. (2019). SVM classification of brain images from MRI scans using morphological transformation and GLCM texture features. International Journal of Computational Systems Engineering, 5(1), 18–23.

    Article  Google Scholar 

  25. Alzubi, J. A., Kumar, A., Alzubi, O. A., & Manikandan, R. (2019). Efficient approaches for prediction of brain tumor using machine learning techniques. Indian Journal of Public Health, 10(2), 279.

    Google Scholar 

  26. Talo, M., Baloglu, U. B., Yıldırım, Ö., & Rajendra Acharya, U. (2019). Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive Systems Research, 54, 176–188.

    Article  Google Scholar 

  27. Bhuvaneswari, P., & Brintha Therese, A. (2015). Detection of cancer in lung with k-NN classification using genetic algorithm. Procedia Materials Science, 10, 433–440.

    Article  Google Scholar 

  28. Asuntha, A., Singh, N., & Srinivasan, A. (2016). PSO, genetic optimization and SVM algorithm used for lung cancer detection. Journal of Chemical and Pharmaceutical Research, 8(6), 351–359.

    Google Scholar 

  29. Senthil Kumar, K., Venkatalakshmi, K., & Karthikeyan, K. (2019). Lung cancer detection using image segmentation by means of various evolutionary algorithms. Computational and Mathematical Methods in Medicine.

    Google Scholar 

  30. Kaur, J., Garg, N., & Kaur, D. (2014). Segmentation and feature extraction of lung region for the early detection of lung tumor. International Journal of Science and Research (IJSR), 3(6), 2327–2330.

    Google Scholar 

  31. Sangamithraa, P. B., & Govindaraju, S. (2016). Lung tumour detection and classification using EK-Mean clustering. In 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 2201–2206). New York: IEEE.

    Google Scholar 

  32. Aggarwal, T., Furqan, A., & Kalra, K. (2015). Feature extraction and LDA based classification of lung nodules in chest CT scan images. In 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1189–1193). New York: IEEE.

    Google Scholar 

  33. Jin, X.-Y., Zhang, Y.-C., & Jin, Q.-L. (2016). Pulmonary nodule detection based on CT images using convolution neural network. In 2016 9th International Symposium on Computational Intelligence and Design (ISCID) (vol. 1, pp. 202–204). New York: IEEE.

    Google Scholar 

  34. Roy, T. S., Sirohi, N., & Patle, A. (2015). Classification of lung image and nodule detection using fuzzy inference system. In International Conference on Computing, Communication and Automation (pp. 1204–1207). New York: IEEE.

    Google Scholar 

  35. Ignatious, S., & Joseph, R. (2015). Computer aided lung cancer detection system. In 2015 Global Conference on Communication Technologies (GCCT) (pp. 555–558). New York: IEEE.

    Google Scholar 

  36. Rendon-Gonzalez, E., & Ponomaryov, V. (2016). Automatic lung nodule segmentation and classification in CT images based on SVM. In 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW) (pp. 1–4). New York: IEEE.

    Google Scholar 

  37. Makaju, S., Prasad, P. W. C., Alsadoon, A., Singh, A. K., & Elchouemi, A. (2018). Lung cancer detection using CT scan images. Procedia Computer Science, 125, 107–114.

    Article  Google Scholar 

  38. Paing, M. P., & Choomchuay, S. (2017). A computer aided diagnosis system for detection of lung nodules from series of CT slices. In 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 302–305). New York: IEEE.

    Google Scholar 

  39. Tariq, A., Usman Akram, M., & Younus Javed, M. (2013). Lung nodule detection in CT images using neuro fuzzy classifier. In 2013 Fourth International Workshop on Computational Intelligence in Medical Imaging (CIMI) (pp. 49–53). New York: IEEE.

    Google Scholar 

  40. Dandıl, E., Çakiroğlu, M., Ekşi, Z., Özkan, M., Kurt, Ö. K., & Canan, A. (2014). Artificial neural network-based classification system for lung nodules on computed tomography scans. In 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR) (pp. 382–386). New York: IEEE.

    Google Scholar 

  41. Manickavasagam, R., & Selvan, S. (2019). Automatic detection and classification of lung nodules in CT image using optimized neuro fuzzy classifier with Cuckoo search algorithm. Journal of Medical Systems, 43(3), 77.

    Article  Google Scholar 

  42. Palani, D., & Venkatalakshmi, K. (2019). An IoT based predictive modelling for predicting lung cancer using fuzzy cluster based segmentation and classification. Journal of Medical Systems, 43(2), 21.

    Article  Google Scholar 

  43. Ke, Q., Zhang, J., Wei, W., Połap, D., Woźniak, M., Kośmider, L., et al. (2019). A neuro-heuristic approach for recognition of lung diseases from X-ray images. Expert Systems with Applications, 126, 218–232.

    Article  Google Scholar 

  44. Lakshmanaprabu, S. K., Mohanty, S. N., Shankar, K., Arunkumar, N., & Ramirez, G. (2019). Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems, 92, 374–382.

    Article  Google Scholar 

  45. Keshani, M., Azimifar, Z., Tajeripour, F., & Boostani, R. (2013). Lung nodule segmentation and recognition using SVM classifier and active contour modeling: A complete intelligent system. Computers in Biology and Medicine, 43(4), 287–300.

    Article  Google Scholar 

  46. Das, A., Rajendra Acharya, U., Panda, S. S., & Sabut, S. (2019). Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques. Cognitive Systems Research, 54, 165–175.

    Article  Google Scholar 

  47. Anter, A. M., & Hassenian, A. E. (2018). CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm. Artificial Intelligence in Medicine.

    Google Scholar 

  48. Liu, Z., Song, Y.-Q., Sheng, V. S., Wang, L., Jiang, R., Zhang, X., et al. (2019). Liver CT sequence segmentation based with improved U-Net and graph cut. Expert Systems with Applications, 126, 54–63.

    Article  Google Scholar 

  49. Doğantekin, A., Özyurt, F., Avcı, E., & Koç, M. (2019). A novel approach for liver image classification: PH-C-ELM. Measurement, 137, 332–338.

    Article  Google Scholar 

  50. Anwar, S. M., Awan, S., Yousaf, S., & Majid, M. (2018). Segmentation of liver tumor for computer aided diagnosis. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) (pp. 366–370). New York: IEEE.

    Google Scholar 

  51. Wu, K., Chen, X., & Ding, M. (2014). Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik-International Journal for Light and Electron Optics, 125(15), 4057–4063.

    Article  Google Scholar 

  52. Khan, N., Ahmed, I., Kiran, M., Rehman, H., Din, S., Paul, A., et al. (2019). Automatic segmentation of liver and lesion detection using H-minima transform and connecting component labeling. Multimedia Tools and Applications, 1–23.

    Google Scholar 

  53. Raj, A., & Jayasree, M. (2016). Automated liver tumor detection using Markov random field segmentation. Procedia Technology, 24, 1305–1310.

    Article  Google Scholar 

  54. Khan, M. A., Akram, T., Sharif, M., Saba, T., Javed, K., Lali, I. U., et al. (2019). Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microscopy Research and Technique.

    Google Scholar 

  55. Tschandl, P., Sinz, C., & Kittler, H. (2019). Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation. Computers in Biology and Medicine, 104, 111–116.

    Article  Google Scholar 

  56. Yang, T., Chen, Y., Jiewei, L., & Fan, Z. (2019). Sampling with level set for pigmented skin lesion segmentation. Signal, Image and Video Processing, 1–9.

    Google Scholar 

  57. Mahbod, A., Schaefer, G., Ellinger, I., Ecker, R., Pitiot, A., & Wang, C. (2019). Fusing fine-tuned deep features for skin lesion classification. Computerized Medical Imaging and Graphics, 71, 19–29.

    Article  Google Scholar 

  58. Garcia-Arroyo, J. L., & Garcia-Zapirain, B. (2019). Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Computer Methods and Programs in Biomedicine, 168, 11–19.

    Article  Google Scholar 

  59. Gavrilov, D. A., Melerzanov, A. V., Shchelkunov, N. N., & Zakirov, E. I. (2019). Use of neural network-based deep learning techniques for the diagnostics of skin diseases. Biomedical Engineering, 52(5), 348–352.

    Article  Google Scholar 

  60. Hameed, N., Shabut, A. M., & Hossain, M. A. (2018). Multi-class skin diseases classification using deep convolutional neural network and support vector machine. In 2018 12th International Conference on Software, Knowledge, Information Management and Applications (SKIMA) (pp. 1–7). New York: IEEE.

    Google Scholar 

  61. Shoieb, D. A., & Youssef, S. M. (2018). An enhanced hybrid model for skin diagnosis using deep convolution neural network. In 2018 9th Cairo International Biomedical Engineering Conference (CIBEC) (pp. 37–40). New York: IEEE.

    Google Scholar 

  62. Shahin, A. H., Kamal, A., & Elattar, M. A. (2018). Deep ensemble learning for skin lesion classification from dermoscopic images. In 2018 9th Cairo International Biomedical Engineering Conference (CIBEC) (pp. 150–153). New York: IEEE.

    Google Scholar 

  63. Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2018). Skin cancer classification using deep learning and transfer learning. In 2018 9th Cairo International Biomedical Engineering Conference (CIBEC) (pp. 90–93). New York: IEEE.

    Google Scholar 

  64. Riaz, F., Naeem, S., Nawaz, R., & Coimbra, M. (2019). Active contours based segmentation and lesion periphery analysis for characterization of skin lesions in dermoscopy images. IEEE Journal of Biomedical and Health Informatics, 23(2), 489–500.

    Article  Google Scholar 

  65. Soudani, A., & Barhoumi, W. (2019). An image-based segmentation recommender using crowdsourcing and transfer learning for skin lesion extraction. Expert Systems with Applications, 118, 400–410.

    Article  Google Scholar 

  66. Hu, K., Liu, S., Zhang, Y., Cao, C., Xiao, F., Huang, W., et al. (2018). A skin lesion segmentation method based on saliency and adaptive thresholding in wavelet domain. In International Symposium on Artificial Intelligence and Robotics (pp. 445–453). Cham: Springer.

    Google Scholar 

  67. Renukalatha, S., & Suresh, K. (2018). A review on biomedical image analysis. Biomedical Engineering: Applications, Basis and Communications, 30(04), 1830001.

    Google Scholar 

  68. Peixeiro, M. (2018) Classification: Linear Discriminant Analysis; Dec 11, 2018, https://towardsdatascience.com/classification-part-linear-discriminant-analysis.

  69. Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295–2329.

    Article  Google Scholar 

  70. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167.

  71. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818–2826).

    Google Scholar 

  72. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Conference on Artificial Intelligence.

    Google Scholar 

  73. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing, 321, 321–331.

    Article  Google Scholar 

  74. Chuquicusma, M. J. M., Hussein, S., Burt, J., & Bagci, U. (2018). How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 240–244). New York: IEEE.

    Google Scholar 

  75. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). Synthetic data augmentation using GAN for improved liver lesion classification. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 289–293). New York: IEEE.

    Google Scholar 

  76. Salehinejad, H., Valaee, S., Dowdell, T., Colak, E., & Barfett, J. (2018). Generalization of deep neural networks for chest pathology classification in x-rays using generative adversarial networks. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 990–994). New York: IEEE.

    Google Scholar 

  77. Wu, E., Wu, K., Cox, D., & Lotter, W. (2018). Conditional infilling Gans for data augmentation in mammogram classification. In Image Analysis for Moving Organ, Breast, and Thoracic Images (pp. 98–106). Cham: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Suganya Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhar, P., Suganya Devi, K., Satti, S.K., Srinivasan, P. (2021). Detail Study of Different Algorithms for Early Detection of Cancer. In: Patgiri, R., Biswas, A., Roy, P. (eds) Health Informatics: A Computational Perspective in Healthcare. Studies in Computational Intelligence, vol 932. Springer, Singapore. https://doi.org/10.1007/978-981-15-9735-0_12

Download citation

Publish with us

Policies and ethics