Advertisement

Effect of Mechanical Stress on Space Charge Behaviors of PP Insulation Materials

  • Hang XuEmail author
  • B. X. Du
  • Zhonglei Li
Chapter
  • 78 Downloads

Abstract

Polypropylene (PP) blended with polyolefin elastomer (POE) has been considered as a potential choice to replace cross-linked polyethylene (XLPE) as HVDC cable insulating material, which shows excellent performance in electrical, mechanical and thermal properties. The space charge accumulation, formed under dc electric field in PP/POE blend, would distort the local electric field, and furtherly lead to partial discharge or premature breakdown. During the processes of fabrication, installation and operation, the cable insulating material may be exposed to mechanical stress. In order to study the influence of mechanical stretching on space charge behaviors, PP/POE blends were prepared and stretched to different ratios of 1, 1.1, 1.2, 1.3 and 1.4, and the space charge behaviors during polarization and depolarization processes were measured and analyzed by PEA method. Besides, the effect of mechanical stretching on surface and internal morphology were analyzed by SEM test, and the relationship between the surface and internal morphology and space charge characteristics is obtained in this chapter.

References

  1. 1.
    G.C. Montanari, C. Laurent, G. Teyssedre, A. Campus, U.H. Nilsson, From LDPE to XLPE: Investigating the Change of Electrical Properties. Part I. Space Charge, Conduction and Lifetime. IEEE Trans. Dielectr. Electr. Insul. 12(3), 438–446 (2005)CrossRefGoogle Scholar
  2. 2.
    G. Teyssedre, C. Laurent, G.C. Montanari, A. Campus, U.H. Nilsson, From LDPE to XLPE: investigating the change of electrical properties. Part II. Luminescence. IEEE Trans. Dielectr. Electr. Insul. 12(3), 447–454 (2005)CrossRefGoogle Scholar
  3. 3.
    F.N. Lim, R.J. Fleming, R.D. Naybour, Space charge accumulation in power cable XLPE insulation. IEEE Trans. Dielectr. Electr. Insul. 6(3), 273–281 (1999)CrossRefGoogle Scholar
  4. 4.
    C. Green, A. Vaughan, G. Stevens, A. Pye, S. Sutton, T. Geussens, M. Fairhurst, Thermoplastic cable insulation comprising a blend of isotactic polypropylene and a propylene-ethylene copolymer. IEEE Trans. Dielectr. Electr. Insul. 22(2), 639–648 (2015)CrossRefGoogle Scholar
  5. 5.
    M.I. L. Hosier, S. Reaud, A.S. Vaughan, S.G. Swingler, Morphology, thermal, mechanical and electrical properties of propylene-based materials for cable applications. IEEE Int’l. Symp. Electr. Insul.(ISEI), pp. 502–505 (2008)Google Scholar
  6. 6.
    K. Yoshino, T. Demura, M. Kawahigashi, Y. Miyashita, K. Kurahashi, Y. Matsuda, The application of novel polypropylene to the insulation of electric power cable. IEEE Trans. Distrib. Conf. Exhibit., pp. 1278–1283 (2002)Google Scholar
  7. 7.
    A.L.N. Silva, M.I.B. Tavares, D.P. Politano, F.M.B. Coutinho, M.C.G. Rocha, Polymer blends based on polyolefin elastomer and polypropylene. J. Appl. Polym. Sci. 66(10), 2005–2014 (1997)CrossRefGoogle Scholar
  8. 8.
    M.Y. Zhou, J.L. He, J. Hu, X.Y. Huang, P.K. Jiang, Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable hvdc cable insulation applications. IEEE Trans. Dielectr. Electr. Insul. 22(2), 673–681 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Dang, J.L. He, J. Hu, Y. Zhou, Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline-amorphous interfaces effect in blends. Polym. Int’l. 48(2), 206–208 (2016)Google Scholar
  10. 10.
    G.C. Montanari, Bringing an Insulation to Failure: the Role of Space Charge. IEEE Trans. Dielectr. Electr. Insul. 18(2), 339–364 (2011)CrossRefGoogle Scholar
  11. 11.
    T.T.N. Vu, G. Teyssedre, B. Vissouvanadin, S. Le Roy, C. Laurent, Correlating conductivity and space charge measurements in multi- dielectrics under various electrical and thermal stresses. IEEE Trans. Dielectr. Electr. Insul. 22(1), 117–127 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Fabiani, G.C. Montanari, A. Cavallini, G. Mazzanti, Relation between space charge accumulation and partial discharge activity in enameled wires Under PWM-like voltage waveforms. IEEE Trans. Dielec. Electr. Insul. 11(3), 393–405 (2004)CrossRefGoogle Scholar
  13. 13.
    L.A. Dissado, G. Mazzanti, G.C. Montanari, The role of trapped space charges in the electrical aging of insulating materials. IEEE Trans. Dielectr. Electr. Insul. 4(5), 496–506 (1997)CrossRefGoogle Scholar
  14. 14.
    X. Wang, H.Q. He, D.M. Tu, C. Lei, Q.G. Du, Dielectric properties and crystalline morphology of low density Polythylene blended with Metallocene catalyzed polyehtylene. IEEE Trans. Dielectr. Electr. Insul. 15(2), 319–326 (2008)CrossRefGoogle Scholar
  15. 15.
    X. Li, Q.G. Du, J. Kang, D.M. Tu, Influence of microstructure on space charges of polypropylene. J. Polym. Sci. B 40(4), 365–374 (2002)CrossRefGoogle Scholar
  16. 16.
    T. Mizutani, H. Semi, K. Kaneko, Space Charge Behavior in low- density polyethylene. IEEE Trans. Dielectr. Electr. Insul. 7(4), 503–508 (2000)CrossRefGoogle Scholar
  17. 17.
    G. Mazzanti, G.C. Montanari, Elemental strain and trapped space charge in thermoelectrical aging of insulating materials life modeling. IEEE Trans. Dielectr. Electr. Insul. 8(6), 966–971 (2001)CrossRefGoogle Scholar
  18. 18.
    L.A. Dissado, G. Mazzanti, G.C. Montanari, Elemental strain and trapped space charge in thermoelectrical aging of insulating materials part 1: elemental strain under thermo-electrical-mechanical stress. IEEE Trans. Dielectr. Electr. Insul. 8(6), 959–965 (2002)CrossRefGoogle Scholar
  19. 19.
    T. Tanaka, T. Fukuda, S. Suzuki, Water tree formation and lifetime estimation in 3.3 kV and 6.6 kV XLPE and PE power cables. IEEE Trans. Power Appar. Syst. 95(6), 1892–1900 (1976)CrossRefGoogle Scholar
  20. 20.
    J.P. Crine, Influence of electro-mechanical stress on electrical properties of dielectric polymers. IEEE Trans. Dielectr. Electr. Insul. 12(4), 791–800 (2005)CrossRefGoogle Scholar
  21. 21.
    K. Yahagi, Dielectric properties and morphology in polyethylene. IEEE Trans. Electr. Insul. 15(3), 241–250 (1980)CrossRefGoogle Scholar
  22. 22.
    J.Y. Li, F.S. Zhou, D.M. Min, S.T. Li, The enerngy distribution of trapped charges in polymers based on isothermal surface potential decay model. IEEE Trans. Dielectr. Electr. Insul. 22(3), 1723–1732 (2015)CrossRefGoogle Scholar
  23. 23.
    E. David, J.L. Parpal, J.P. Crine, Influence of internal mechanical stress and strain on electrical performance of polyethylene electrical treeing resistance. IEEE Trans. Dielectr. Electr. Insul. 3(2), 248–257 (1996)CrossRefGoogle Scholar
  24. 24.
    S. Mita, K. Yahagi, Effect of elongation on dielectric breakdown strength in polyethylene. Jpn. J. Appl. Phys. 14(2), 197–201 (1975)CrossRefGoogle Scholar
  25. 25.
    Y. Li, M. Yasuda, T. Takada, Pulsed electroacoustic method for measurement of charge accumulation in solid dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1(2), 188–195 (1994)CrossRefGoogle Scholar
  26. 26.
    G. Mazzanti, G.C. Montanari, J.M. Alison, A space-charge based method for the estimation of apparent mobility and trap depth as markers for insulation degradation theoretical basis and experimental validation. IEEE Trans. Dielectr. Electr. Insul. 10(2), 187–197 (2003)CrossRefGoogle Scholar
  27. 27.
    M. Hao, Y. Zhou, G. Chen, G. Wilson, P. Jarman, Space Charge behavior in thick oil-impregnated pressboard under HVDC stresses. IEEE Trans. Dielectr. Electr. Insul. 22(1), 397–400 (2013)Google Scholar
  28. 28.
    J.P. Jones, J.P. Llewellyn, T.J. Lewis, The Contribution of field- induced morphological change to the electrical aging and breakdown of polyethylene. IEEE Trans. Dielectr. Electr. Insul. 12(5), 951–966 (2005)CrossRefGoogle Scholar
  29. 29.
    Z. Fu, W.L. Dai, H.M. Yu, X.X. Zou, B.Q. Chen, Effect of composition on fracture behavior of polypropylene–wollastonite–polyolefin elastomer system. J. Mater. Sci. 46(5), 1272–1280 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Tahara, Y. Hayase, M. Honjoh, K. Nagasawa, Y. Tanaka, T. Takada, M. Yoshida, Charge accumulation properties in saturated and aromatic hydrocarbons by electron beam irradiation. IEEE Conf. Electr. Insul. Dielectr. Phenom (CEIDP), pp. 165–168 (2008)Google Scholar
  31. 31.
    S. Serra, E. Tosatti, S. Iarlori, S. Scandolo, G. Santoro, Interchain electron states in polyethylene. Phys. Rev. B 62(62), 4389–4393 (2000)CrossRefGoogle Scholar
  32. 32.
    T.J. Lewis, The physico-chemical origins and nature of space charge in insulating solids under electrical stress. IEEE 7th Int’l. Conf. Solid Diel. (ICSD), pp. 223–227 (2001)Google Scholar
  33. 33.
    W. Glenz, N. Morosoff, A. Peterlin, Density of drawn polyethylene. J. Polym. Sci. Polym. Lett. 9(3), 211–217 (1971)CrossRefGoogle Scholar
  34. 34.
    A. Baba, K. Ikezaki, Drawing and annealing effects on thermally stimulated currents in polypropylene films. J. Appl. Phys. 72, 2057–2059 (1992)CrossRefGoogle Scholar
  35. 35.
    J. Zhao, Z. Xu, G. Chen P. Lewin, Effect of field-dependent mobility on current density and dynamics of space charge in polyethylene. IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), pp. 120–123 (2009)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.JinanChina
  2. 2.TianjinChina

Personalised recommendations