Skip to main content

Green Composites Films with Antibacterial Properties

  • Chapter
  • First Online:
Green Composites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 732 Accesses

Abstract

Alginate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) are biodegradable biopolymers with great promise in a wide range of industrial applications. However, these biopolymers do not possess antibacterial properties which are highly desirable for certain advanced applications. In this regard, herein, we present green composites based on these polymers reinforced with two types of carbon nanomaterials: graphene oxide and carbon nanofibers. These nanomaterials improve some of the polymer physical properties such as compressive strength, wettability, liquid water diffusion, and tensile properties among others. Moreover, these nanocomposites exhibit antibacterial properties including against multidrug-resistant pathogens such as the life-threatening methicillin-resistant Staphylococcus epidermidis. Additionally, they do not result toxic when they come into contact with human keratinocyte HaCat cells or canine adipose derived mesenchymal stem cells using the same concentrations that exhibit high antibacterial activity. In addition, the incorporation of low amounts of these carbon nanomaterials improves cell attachment and proliferation. Thus, the combination of these green biopolymers with carbon nanomaterials such as graphene oxide and carbon nanofibers shows excellent enhancement of biological and physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson AJ, Dawes E (1990) Ocurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    Article  CAS  Google Scholar 

  2. Aroca AS, Pradas MM, Ribelles JLG (2008) Effect of crosslinking on porous poly(methyl methacrylate) produced by phase separation. Colloid Polym Sci 286:209–216. https://doi.org/10.1007/s00396-007-1755-0

    Article  CAS  Google Scholar 

  3. Aroca AS, Pradas MM, Ribelles JLG, Rault J (2015) Thermal analysis of water in reinforced plasma-polymerised poly(2-hydroxyethyl acrylate) hydrogels. Eur Polym J 72:523–534. https://doi.org/10.1016/j.eurpolymj.2015.05.032

    Article  CAS  Google Scholar 

  4. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581. https://doi.org/10.1038/nmat3064

    Article  CAS  Google Scholar 

  5. Berthet MA, Angellier-Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos Part A Appl Sci Manuf 72:139–147

    Article  CAS  Google Scholar 

  6. Berthet MA, Angellier-Coussy H, Machado D, Hilliou L, Staebler A, Vicente A, Gontard N (2015) Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Ind Crops Prod 69:110–122. https://doi.org/10.1016/j.indcrop.2015.01.028

    Article  CAS  Google Scholar 

  7. Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence. https://doi.org/10.4161/viru.2.5.17035

    Article  Google Scholar 

  8. Bucci DZ, Tavares LBB, Sell I (2005) PHB packaging for the storage of food products. Polym Test 24:564–571

    Article  CAS  Google Scholar 

  9. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808. https://doi.org/10.3144/expresspolymlett.2014.82

    Article  CAS  Google Scholar 

  10. Castro-Mayorga JL, Fabra MJ, Lagaron JM (2016) Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innov Food Sci Emerg Technol 33:524–533

    Article  CAS  Google Scholar 

  11. Chaba JM, Nomngongo PN (2018) Preparation of V2O5-ZnO coated carbon nanofibers: application for removal of selected antibiotics in environmental matrices. J Water Process Eng 23:50–60. https://doi.org/10.1016/j.jwpe.2018.03.003

    Article  Google Scholar 

  12. Chang HM, Wang ZH, Luo HN, Xu M, Ren XY, Zheng GX, Wu BJ, Zhang XH, Lu XY, Chen F, Jing XH, Wang L (2014) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz J Med Biol Res 47:533–539. https://doi.org/10.1590/1414-431X20143930

    Article  CAS  Google Scholar 

  13. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578. https://doi.org/10.1016/j.biomaterials.2005.04.036

    Article  CAS  Google Scholar 

  14. Chong Y, Ge C, Fang G, Wu R, Zhang H, Chai Z, Chen C, Yin JJ (2017) Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ Sci Technol 51:10154–10161. https://doi.org/10.1021/acs.est.7b00663

    Article  CAS  Google Scholar 

  15. Debiagi F, Kobayashi RKT, Nakazato G, Panagio LA, Mali S (2014) Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Ind Crops Prod 52:664–670. https://doi.org/10.1016/j.indcrop.2013.11.032

    Article  CAS  Google Scholar 

  16. Draget K, Skjakbrak G, Smidsrod O (1994) Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr Polym 25:31–38

    Article  CAS  Google Scholar 

  17. Elias L, Taengua R, Frígols B, Salesa B, Serrano-Aroca Á (2019) Carbon nanomaterials and LED irradiation as antibacterial strategies against gram-positive multidrug-resistant pathogens. Int J Mol Sci 20:3603. https://doi.org/10.3390/ijms20143603

    Article  CAS  Google Scholar 

  18. Fernández J, Bert F, Nicolas-Chanoine MH (2016) The challenges of multi-drug-resistance in hepatology. J Hepatol. https://doi.org/10.1016/j.jhep.2016.08.006

    Article  Google Scholar 

  19. Frígols B, Martí M, Hernández-Oliver C, Aarstad O, Teialeret Ulset A-S, Inger Sӕtrom G, Lillelund Aachmann F, Serrano-Aroca Á (n.d.) Graphene oxide in zinc alginate films: antibacterial activity, water sorption, wettability and opacity. Carbohydr Polym (under review)

    Google Scholar 

  20. Frígols B, Martí M, Salesa B, Hernández-Oliver C, Aarstad O, Ulset AST, Sætrom GI, Aachmann FL, Serrano-Aroca Á (2019) Graphene oxide in zinc alginate films: antibacterial activity, cytotoxicity, zinc release, water sorption/diffusion, wettability and opacity. PLoS ONE 14:e0212819. https://doi.org/10.1371/journal.pone.0212819

    Article  CAS  Google Scholar 

  21. García-García JM, Quijada-Garrido I, López L, París R, Núñez-López MT, De La Peña Zarzuelo E, Garrido L (2013) The surface modification of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers to improve the attachment of urothelial cells. Mater Sci Eng C 33:362–369. https://doi.org/10.1016/j.msec.2012.08.052

    Article  CAS  Google Scholar 

  22. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approach. Chem Rev 112:6156–6214. https://doi.org/10.1021/cr3000412

    Article  CAS  Google Scholar 

  23. Gerard T, Budtova T (2012) Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur Polym J 48:1110–1117. https://doi.org/10.1016/j.eurpolymj.2012.03.015

    Article  CAS  Google Scholar 

  24. Godbey WT, Atala A (2002) In vitro systems for tissue engineering. Ann NY Acad Sci 961:10–26. https://doi.org/10.1111/j.1749-6632.2002.tb03041.x

    Article  CAS  Google Scholar 

  25. Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285. https://doi.org/10.1016/S0169-409X(97)00124-5

    Article  CAS  Google Scholar 

  26. Ha CS, Cho WJ (2002) Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci 27:759–809. https://doi.org/10.1016/S0079-6700(01)00050-8

    Article  CAS  Google Scholar 

  27. Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658. https://doi.org/10.1016/j.carbpol.2010.08.038

    Article  CAS  Google Scholar 

  28. Han J, Wu LP, Liu XB, Hou J, Zhao LL, Chen JY, Zhao DH, Xiang H (2017) Biodegradation and biocompatibility of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Biomaterials 139:172–186. https://doi.org/10.1016/j.biomaterials.2017.06.006

    Article  CAS  Google Scholar 

  29. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomater Silver Jubilee Compendium 21:175–189. https://doi.org/10.1016/B978-008045154-1.50021-6

    Article  Google Scholar 

  30. Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym 94:339–344

    Article  CAS  Google Scholar 

  31. Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734. https://doi.org/10.1016/j.biomaterials.2009.01.034

    Article  CAS  Google Scholar 

  32. Jia Z, Shen D, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 333:1–6. https://doi.org/10.1016/S0008-6215(01)00112-4

    Article  CAS  Google Scholar 

  33. Jin S, Xu D, Zhou N, Yuan J, Shen J (2013) Antibacterial and anticoagulation properties of polyethylene/geneO-MPC nanocomposites. J Appl Polym Sci 129:884–891

    Article  CAS  Google Scholar 

  34. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  CAS  Google Scholar 

  35. Jost V, Kopitzky R (2015) Blending of polyhydroxybutyrate-co-valerate with polylactic acid for packaging applications—reflections on miscibility and effects on the mechanical and barrier properties. Chem Biochem Eng Q 29:221–246. https://doi.org/10.15255/CABEQ.2014.2257

  36. Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48:4323–4329. https://doi.org/10.1016/j.carbon.2010.07.045

    Article  CAS  Google Scholar 

  37. Ke Y, Liu C, Zhang X, Xiao M, Wu G (2017) Surface modification of polyhydroxyalkanoates toward enhancing cell compatibility and antibacterial activity. Macromol Mater Eng 302:1700258. https://doi.org/10.1002/mame.201700258

    Article  CAS  Google Scholar 

  38. Krikštanavičiene K, Stanys S, Jonaitiene V (2014) Comparative investigation of mechanical-physical characteristics of biodegradable and non-degradable yarns. Autex Res J 14:61–72. https://doi.org/10.2478/aut-2014-0001

    Article  Google Scholar 

  39. Kushwah BS, Kushwah AVS, Singh V (2016) Towards understanding polyhydroxyalkanoates and their use. J Polym Res 23. https://doi.org/10.1007/s10965-016-0988-3

  40. Lagaron JM, Lopez-Rubio A (2011) Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol 22:611–617. https://doi.org/10.1016/j.tifs.2011.01.007

    Article  CAS  Google Scholar 

  41. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  Google Scholar 

  42. Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438. https://doi.org/10.1016/0167-7799(96)10061-5

    Article  CAS  Google Scholar 

  43. Lee SY, Choi JI, Han K, Song JY (1999) Removal of endotoxin during purification of poly(3-hydroxybutyrate) from gram-negative bacteria. Appl Environ Microbiol 65:2762–2764

    Article  CAS  Google Scholar 

  44. Li W, Ding Y, Rai R, Roether JA, Schubert DW, Boccaccini AR (2014) Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Mater Sci Eng C 41:320–328. https://doi.org/10.1016/j.msec.2014.04.052

    Article  CAS  Google Scholar 

  45. Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater. https://doi.org/10.1038/am.2016.48

    Article  Google Scholar 

  46. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. https://doi.org/10.1021/nn202451x

    Article  CAS  Google Scholar 

  47. Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous Mesoporous Mater 114:431–439. https://doi.org/10.1016/j.micromeso.2008.01.032

    Article  CAS  Google Scholar 

  48. Llorens-Gámez M, Salesa B, Serrano-Aroca Á (2020) Physical and biological properties of alginate/carbon nanofibers hydrogel films. Int J Biol Macromol 151:499–507. https://doi.org/10.1016/j.ijbiomac.2020.02.213

    Article  CAS  Google Scholar 

  49. Llorens-Gámez M, Serrano-Aroca Á (2018) Low-cost advanced hydrogels of calcium alginate/carbon nanofibers with enhanced water diffusion and compression properties. Polymers (Basel) 10:405. https://doi.org/10.3390/polym10040405

    Article  CAS  Google Scholar 

  50. Martí M, Frígols B, Salesa B, Serrano-Aroca Á (2019) Calcium alginate/graphene oxide films: reinforced composites able to prevent Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis infections with no cytotoxicity for human keratinocyte HaCaT cells. Eur Polym J 110:14–21. https://doi.org/10.1016/J.EURPOLYMJ.2018.11.012

    Article  Google Scholar 

  51. Martí M, Frígols B, Serrano-Aroca Á (2018) Antimicrobial characterization of advanced materials for bioengineering applications. J Vis Exp e57710. https://doi.org/10.3791/57710

  52. Modi S, Koelling K, Vodovotz Y (2013) Assessing the mechanical, phase inversion, and rheological properties of poly-[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) blended with poly-(l-lactic acid) (PLA). Eur Polym J 49:3681–3690. https://doi.org/10.1016/j.eurpolymj.2013.07.036

    Article  CAS  Google Scholar 

  53. Monleón Pradas M, Gómez Ribelles JL, Serrano Aroca A, Gallego Ferrer G, Suay Antón J, Pissis P (2001) Interaction between water and polymer chains in poly(hydroxyethyl acrylate) hydrogels. Colloid Polym Sci 279:323–330. https://doi.org/10.1007/s003960000426

    Article  Google Scholar 

  54. Murata H, Nakajima Y, Saitoh N, Yoshizawa N, Suemasu T, Toko K (2019) High-electrical-conductivity multilayer graphene formed by layer exchange with controlled thickness and interlayer. Sci Rep 9:1–5. https://doi.org/10.1038/s41598-019-40547-0

    Article  CAS  Google Scholar 

  55. Nakagawa M, Teraoka F, Fujimoto S, Hamada Y, Kibayashi H, Takahashi J (2006) Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. J Biomed Mater Res Part A 77:112–118. https://doi.org/10.1002/jbm.a.30521

    Article  CAS  Google Scholar 

  56. Norrrahim MNF, Ariffin H, Hassan MA, Ibrahim NA, Nishida H (2013) Performance evaluation and chemical recyclability of a polyethylene/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blend for sustainable packaging. RSC Adv 3:24378–24388

    Article  CAS  Google Scholar 

  57. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Google Scholar 

  58. Pandey H, Parashar V, Parashar R, Prakash R, Ramteke PW, Pandey AC (2011) Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale 3:4104. https://doi.org/10.1039/c1nr10661a

    Article  CAS  Google Scholar 

  59. Papi M, Palmieri V, Bugli F, De Spirito M, Sanguinetti M, Ciancico C, Braidotti MC, Gentilini S, Angelani L, Conti C (2016) Biomimetic antimicrobial cloak by graphene-oxide agar hydrogel. Sci Rep 6:12. https://doi.org/10.1038/s41598-016-0010-7

    Article  CAS  Google Scholar 

  60. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2013.07.011

  61. Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509. https://doi.org/10.1016/j.progpolymsci.2010.01.001

    Article  CAS  Google Scholar 

  62. Ratner BD, Hoffman AS, Lemons JE (2006) Biomaterials science: an introduction to materials, vol I. In: Basic concepts 3rd annual microscopy workshop in microscopy for materials these topics will be covered: 31, pp 25–27

    Google Scholar 

  63. Recco MS, Floriano AC, Tada DB, Lemes AP, Lang R, Cristovan FH (2016) Poly(3-hydroxybutyrate-co-valerate)/poly(3-thiophene ethyl acetate) blends as a electroactive biomaterial substrate for tissue engineering application. RSC Adv 6:25330–25338. https://doi.org/10.1039/c5ra26747a

    Article  CAS  Google Scholar 

  64. Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712. https://doi.org/10.1007/s10529-006-9156-x

    Article  CAS  Google Scholar 

  65. Rivera-Briso AL, Aachmann FL, Moreno-Manzano V, Serrano-Aroca Á (2019) Graphene oxide nanosheets versus carbon nanofibers: enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.10.034

  66. Rivera-Briso AL, Serrano-Aroca Á (2018) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications. Polymers (Basel). https://doi.org/10.3390/polym10070732

    Article  Google Scholar 

  67. Sabater i Serra R, Molina-Mateo J, Torregrosa-Cabanilles C, Andrio-Balado A, Dueñas JMM, Serrano-Aroca Á (2020) Bio-nanocomposite hydrogel based on zinc alginate/graphene oxide: morphology, structural conformation, thermal behavior/degradation, and dielectric properties. Polymers (Basel) 12:702. https://doi.org/10.3390/polym12030702

  68. Sahari J, Sapuan SM (2012) Natural fibre reinforced biodegradable polymer composites. Rev Adv Mater Sci 30:166–174

    CAS  Google Scholar 

  69. Salesa B, Llorens-Gámez M, Serrano-Aroca Á (2020) Study of 1D and 2D carbon nanomaterial in alginate films. Nanomaterials 10:206. https://doi.org/10.3390/nano10020206

    Article  CAS  Google Scholar 

  70. Salesa B, Martí M, Frígols B, Serrano-Aroca Á (2019) Carbon nanofibers in pure form and in calcium alginate composites films: new cost-effective antibacterial biomaterials against the life-threatening multidrug-resistant staphylococcus epidermidis. Polymers (Basel) 11:453. https://doi.org/10.3390/polym11030453

    Article  CAS  Google Scholar 

  71. Sánchez-Correa F, Vidaurre-Agut C, Serrano-Aroca A, Campillo-Fernández AJ (2018) Poly(2-hydroxyethyl acrylate) hydrogels reinforced with graphene oxide: remarkable improvement of water diffusion and mechanical properties. J Appl Polym Sci 46158. https://doi.org/10.1002/app.46158

  72. Sanchez-Garcia MD, Lagaron JM, Hoa SV (2010) Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos Sci Technol 70:1095–1105. https://doi.org/10.1016/j.compscitech.2010.02.015

    Article  CAS  Google Scholar 

  73. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed. https://doi.org/10.2147/IJN.S24805

  74. Serrano-Aroca Á, Deb S (2017) Synthesis of irregular graphene oxide tubes using green chemistry and their potential use as reinforcement materials for biomedical applications. PLoS ONE 12:e0185235. https://doi.org/10.1371/journal.pone.0185235

    Article  CAS  Google Scholar 

  75. Serrano-Aroca Á, Iskandar L, Deb S (2018) Green synthetic routes to alginate-graphene oxide composite hydrogels with enhanced physical properties for bioengineering applications. Eur Polym J 103:198–206. https://doi.org/10.1016/j.eurpolymj.2018.04.015

    Article  CAS  Google Scholar 

  76. Serrano-Aroca Á, Llorens-Gámez M (2017) Dynamic mechanical analysis and water vapour sorption of highly porous poly(methyl methacrylate). Polymer (Guildf) 125:58–65. https://doi.org/10.1016/j.polymer.2017.07.075

    Article  CAS  Google Scholar 

  77. Serrano-Aroca Á, Ruiz-Pividal JF, Llorens-Gámez M (2017) Enhancement of water diffusion and compression performance of crosslinked alginate films with a minuscule amount of graphene oxide. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-10260-x

    Article  CAS  Google Scholar 

  78. Serrano Aroca A, Campillo Fernández AJ, Gómez Ribelles JL, Monleón Pradas M, Gallego Ferrer G, Pissis P (2004) Porous poly(2-hydroxyethyl acrylate) hydrogels prepared by radical polymerisation with methanol as diluent. Polymer (Guildf) 45. https://doi.org/10.1016/j.polymer.2004.10.033

  79. Serrano Aroca A, Gómez Ribelles JL, Monleón Pradas M, Vidaurre Garayo A, Suay Antón J (2007) Characterisation of macroporous poly(methyl methacrylate) coated with plasma-polymerised poly(2-hydroxyethyl acrylate). Eur Polym J 43:4552–4564. https://doi.org/10.1016/j.eurpolymj.2007.07.026

    Article  CAS  Google Scholar 

  80. Serrano Aroca A, Monleón Pradas M, Gómez Ribelles JL (2007) Plasma-induced polymerisation of hydrophilic coatings onto macroporous hydrophobic scaffolds. Polymer (Guildf) 48:2071–2078. https://doi.org/10.1016/j.polymer.2007.02.017

    Article  CAS  Google Scholar 

  81. Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S (2015) Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces 7:6966–6973

    Article  CAS  Google Scholar 

  82. Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763. https://doi.org/10.1016/j.compscitech.2006.11.009

    Article  CAS  Google Scholar 

  83. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A Appl Sci Manuf 39:875–886. https://doi.org/10.1016/j.compositesa.2008.01.004

    Article  CAS  Google Scholar 

  84. Sridhar V, Lee I, Chun HH, Park H (2013) Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polym Lett 7:320–328. https://doi.org/10.3144/expresspolymlett.2013.29

    Article  CAS  Google Scholar 

  85. Stout DA, Yoo J, Santiago-Miranda AN, Webster TJ (2012) Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular applications. Int J Nanomed 7:5653–5669. https://doi.org/10.2147/IJN.S34574

    Article  CAS  Google Scholar 

  86. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  87. Sultana N, Wang M (2012) PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication 4. https://doi.org/10.1088/1758-5082/4/1/015003

  88. Sykacek E, Hrabalova M, Frech H, Mundigler N (2009) Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Compos Part A Appl Sci Manuf 40:1272–1282. https://doi.org/10.1016/j.compositesa.2009.05.023

    Article  CAS  Google Scholar 

  89. Tegou E, Magana M, Katsogridaki AE, Ioannidis A, Raptis V, Jordan S, Chatzipanagiotou S, Chatzandroulis S, Ornelas C, Tegos GP (2016) Terms of endearment: bacteria meet graphene nanosurfaces. Biomaterials. https://doi.org/10.1016/j.biomaterials.2016.02.030

    Article  Google Scholar 

  90. Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2009.07.010

  91. Vauchel P, Kaas R, Arhaliass A, Baron R, Legrand J (2008) A new process for extracting alginates from laminaria digitata: reactive extrusion. Food Bioprocess Technol 1:297–300

    Article  Google Scholar 

  92. Wang L, Chen J, Shi L, Shi Z, Ren L, Wang Y (2014) The promotion of antimicrobial activity on silicon substrates using a “click” immobilized short peptide. Chem Commun (Camb) 50:975–977. https://doi.org/10.1039/c3cc47922f

    Article  CAS  Google Scholar 

  93. Wang L, Du J, Cao D, Wang Y (2013) Recent advances and the application of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as tissue engineering materials. J Macromol Sci Part A 50:885–893. https://doi.org/10.1080/10601325.2013.802540

    Article  CAS  Google Scholar 

  94. Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C https://doi.org/10.1016/j.msec.2016.12.125

  95. Zactiti EM, Kieckbusch TG (2009) Release of potassium sorbate from active films of sodium alginate crosslinked with calcium chloride. Packag Technol Sci 22:349–358

    Article  CAS  Google Scholar 

  96. Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4:3833–3842. https://doi.org/10.1039/c2nr31040f

    Article  CAS  Google Scholar 

  97. Zhao E, Chen Y, Wang H, Chen S, Lam JWY, Leung CWT, Hong Y, Tang BZ (2015) Light-enhanced bacterial killing and wash-free imaging based on AIE fluorogen. ACS Appl Mater Interfaces 7:7180–7188. https://doi.org/10.1021/am509142k

    Article  CAS  Google Scholar 

  98. Zhao J, Liu L, Li F (2015) Fabrication and reduction. https://doi.org/10.1007/978-3-662-44829-8_1

  99. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  100. Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138:2064–2077. https://doi.org/10.1021/jacs.5b11411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Fundación Universidad Católica de Valencia San Vicente Mártir for the financial support through the 2019-231-003UCV grant (awarded to Á. S-A).

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Serrano-Aroca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selgas, R., Serrano-Aroca, Á. (2021). Green Composites Films with Antibacterial Properties. In: Thomas, S., Balakrishnan, P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_19

Download citation

Publish with us

Policies and ethics