Skip to main content

Biodegradable Polymeric Materials for Medicinal Applications

  • Chapter
  • First Online:
Green Composites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Biodegradable polymeric materials have emerged as a group of smart materials having immense applications. One of the promising applications of both synthetic and natural biodegradable polymers is in the medicinal field. The selection and fabrication of biodegradable polymers is a promising challenge as these materials must be compatible with the biological system and do not interfere with the proper functioning of the living body. The factors that must be accounted for the fabrications are the stability, biocompatibility, biodegradability, and its cytotoxicity. The pledging applications of biodegradable materials in the medicinal applications are in drug delivery, orthopedics, dental applications, cardiac and intestinal applications, and in tissue engineering. The present chapter is focused on the general characteristics of biodegradable polymers, factors affecting the biodegradations, its mechanisms, and the important category of different degradable polymeric materials explored in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chammy R (ed) (2013) Biodegradation, life of science. Intech open. https://doi.org/10.5772/52777

  2. Elisa T, Ariadna R (2013) Biodegradation of medical purpose polymeric materials and their impact on biocompatibility. Intech Open https://doi.org/10.5772/56220

  3. Kunduru KR, Basu A, Domb AJ (2016) Biodegradable polymers: medical applications. Encyclopedia Polym Sci Technol 1–22. https://doi.org/10.1002/0471440264

  4. Katarzyna L, Grażyna L (2010) Polymers biodegradation and biodegradable polymers—a review. Polish J Environ 19:255–266

    Google Scholar 

  5. Moiseev YV, Daurova TT et al (2007) The specificity of polymer degradation in the living body. J Polym Sci Polym Symp 66:269–276

    Article  Google Scholar 

  6. Banerjee A, Chatterjee K et al (2014) Enzymatic degradation of polymers: a brief review. Mater Sci Technol 30:567–573

    Article  CAS  Google Scholar 

  7. Mythili P, Janis L et al (2017) Biodegradable materials and metallic implants—a review. J Funct Biomater 8:44–58

    Article  CAS  Google Scholar 

  8. Chhaya E, Jigisha P et al (2011) Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 25:79–85

    Google Scholar 

  9. Roongnapa S (2013) Novel strategic innovations for designing drug delivery system using molecularly imprinted micro/nanobeads 44:235–268

    Google Scholar 

  10. Juan L, Yuran H et al (2014) pH sensitive nano systems for drug delivery in cancer therapy 32:693–710

    Google Scholar 

  11. Yanhua L, Wenping W (2013) pH sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery 8:159–167

    Google Scholar 

  12. Yu V, Moiseev T et al (1979) The specificity of polymer degradation in the living body. J Polym Sci Polym Symp 66:269–276

    Google Scholar 

  13. Bernard M, Jubeli E et al (2018) Biocompatibility of polymer-based biomaterials and medical devices—regulations. In: Vitro screening risk-management. https://doi.org/10.1039/C8BM00518D

  14. Ozdil D, Wimpenny HM et al (2016) Biocompatibility of biodegradable medical polymers. In: Science and principles of biodegradable and bioresorbable medical polymers. https://doi.org/10.1016/B978-0-08-100372-5.00013-1

  15. Pillai CKS (2013) Recent advances in biodegradable polymeric materials. Mater Sci Technol 30:558–566

    Article  CAS  Google Scholar 

  16. Ha CS, Gardella JA (2005) Surface chemistry of biodegradable polymers for drug delivery systems. Chem Rev 105:4205–4232

    Article  CAS  Google Scholar 

  17. Bret D, Ulery et al (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B: Polym Phys 49:832–864

    Google Scholar 

  18. Edgar M, Maria I et al (2013) Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomed 8:3071–3091

    Google Scholar 

  19. Neeraj K, Aviva ES et al (2002) Biodegradable polymers, medical applications. Encyclopaedia Polym Sci Technol 5:263–285 (John Wiley & Sons Inc)

    Google Scholar 

  20. Santosh K, Sumit S et al (2017) Structural features and biomedical applications of biodegradable polymers. Int J Eng Dev Res 5:761–765

    Google Scholar 

  21. Manfred FM (2015) Applications of synthetic polymers in clinical medicine. Biosurface Biotribol 1:161–176

    Article  Google Scholar 

  22. Tejas V, Shah et al (2019) A glimpse of biodegradable polymers and their biomedical applications. e-Polymers 19:385–410

    Google Scholar 

  23. Liu Y, Wang W et al (2013) pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharm Sci 8:159–167

    Article  Google Scholar 

  24. Liu J, Huang Y et al (2014) Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 32:693–710

    Article  CAS  Google Scholar 

  25. Gupta P, Vermani K et al (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today 7:569–579

    Article  CAS  Google Scholar 

  26. Piyush G, Kavitha V et al (2002) Hydrogels:from controlled release to pH responsive drug delivery 7:569–579

    Google Scholar 

  27. Curk T, Dobnikar J et al (2016) Rational design of molecularly imprinted polymers. Soft Matter 12:35–44

    Article  CAS  Google Scholar 

  28. Haupt K (2002) Imprinted polymers—tailor-made mimics of antibodies and receptors. Chem Commun 2:171–178

    Google Scholar 

  29. Chen L, Wang X et al (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211

    Article  CAS  Google Scholar 

  30. Javed F, Al-Askar M et al (2012) Tissue reactions to various suture materials used in oral surgical interventions. ISRN Dent. 2012:762095. https://doi.org/10.5402/2012/762095

  31. Nakamura T, Shimizu Y et al (1992) A novel bioabsorbable monofilament surgical suture made from (Poly-caprolactone, L-lactide)copolymer.In: Dauner M, Renardy M, Planck H (eds) Degradation phenomena of polymeric biomaterials. Springer, Stuttgart

    Google Scholar 

  32. Jain R, Shah NH et al (1998) Controlled drug delivery by biodegradable poly (ester) devices: different preparative approaches. Drug Dev Indian Pharm 24:703–727

    Article  CAS  Google Scholar 

  33. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  CAS  Google Scholar 

  34. Kovanya M, Viness P et al (2012) Oral drug delivery systems comprising altered geometric configurations for controlled drug delivery. Int J Mol Sci 13:18–43

    Google Scholar 

  35. John CM, Arthur JT (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21 2335–2346

    Google Scholar 

  36. Kevin L, Ong BM et al (2015) New biomaterials for orthopedic implants. Orthopedic Res Rev 7:107–130

    Google Scholar 

  37. Zeeshan S, Shariq N et al (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials 8:5744–5794

    Article  CAS  Google Scholar 

  38. Rhee SH, Lee JD et al (2000) Nucleation of hydroxyapatite crystal through chemical interaction with collagen. Journal of Am Ceram Soc 83:2890–2892

    Article  CAS  Google Scholar 

  39. Hsu FY, Chueh SC et al (1999) Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials 20:1931–1936

    Article  CAS  Google Scholar 

  40. Brodie J, Goldie E et al (2005) Osteoblast interactions with calcium phosphate ceramics modified by coating with typeI collagen. J Biomed Mater Res A 73:409–421

    Article  CAS  Google Scholar 

  41. Rodrigues C, Serricella P et al (2003) Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24:4987–4997

    Article  CAS  Google Scholar 

  42. Vainionpää S, Rokkanen P et al (1989) Surgical applications of biodegradable polymers in human tissues. Prog Polym Sci 14:679–716

    Article  Google Scholar 

  43. Zhang X, Mattheus G et al (1993) Biodegradable polymers for orthopedic applications. J Macromolecular Sci Part C Polym Rev 33:81–102

    Article  CAS  Google Scholar 

  44. Daristotle JL, Lau L et al (2019) Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioeng Translational Med. https://doi.org/10.1002/btm2.10149

  45. Sun G, Zhang X et al (2011) Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci 108:20976–20981

    Article  CAS  Google Scholar 

  46. Zhao X, Lang Q et al (2016) Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater 5:108–118

    Article  CAS  Google Scholar 

  47. Konieczynska MD, Villa-Camacho JC et al (2016) On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction. Angew Chem Int Ed 55:9984–9987

    Article  CAS  Google Scholar 

  48. Zahedi P, Rezaeian I et al (2009) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21:77–95

    Article  CAS  Google Scholar 

  49. Katti DS, Robinson KW et al (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res 70B:286–296

    Article  CAS  Google Scholar 

  50. Masutani K, Kimura Y (2015) Chapter 1 PLA synthesis. From the monomer to the polymer. In: Poly(lactic acid) science and technology: processing, properties, additives and applications. The Royal Society of Chemistry, London, UK, pp 1–36

    Google Scholar 

  51. Zhong XD, Dehghani F (2010) Solvent free synthesis of organometallic catalysts for the copolymerisation of carbon dioxide and propylene oxide. Appl Catal B Environ 98:101–111

    Article  CAS  Google Scholar 

  52. Mariam M, Murtaza NA et al (2018) Synthetic polymeric biomaterials for wound healing: a review. Progr Biomater 7:1–21

    Article  CAS  Google Scholar 

  53. Elisa B, Elena V et al (2011) Degradable polymers may improve dental practice. J Appl Biomater Biomech 9:223–231

    Google Scholar 

  54. Maria JRV, Daniela M et al (2015) Current uses of Poly(lactic-co-glycolic acid) in the dental field: a comprehensive review. J Chem Volume, Article ID 525832, 12 pages

    Google Scholar 

  55. Agata SW, Jerzy S et al (2020) Ageing of dental composites based on methacrylate resins—a critical review of the causes and method of assessment. Polymers 12:882–893

    Article  CAS  Google Scholar 

  56. Dinesh R, Viritpon S et al (2018) Polymeric materials and films in dentistry: an overview. J Adv Res https://doi.org/10.1016/j.jare.2018.05.001

  57. Beyer M, Reichert JHE et al (2010) Pectin, alginate and gum arabic polymers reduce citric acid erosion effects on human enamel. Dent Mater 26:831–839

    Article  CAS  Google Scholar 

  58. Andra D, Maria L et al (2005) Mucin-chitosan complexes at the solid-liquid interface: multilayer formation and stability in surfactant solutions. Langmuir 21:9502–9509

    Article  CAS  Google Scholar 

  59. Andrea T, Eleonora M et al (2011) Silver–polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomater 7:337–346

    Article  CAS  Google Scholar 

  60. Mona AO, Yuncang L et al (2019) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Mater 4:22–36

    Article  Google Scholar 

  61. Rajeswari R, Clarisse CH et al (2012) Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed Mater 7 015001 (16pp)

    Google Scholar 

  62. Xifeng L, Shanfeng W et al (2015) Tissue engineering, cardiovascular: biodegradable polymers. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis, New York, USA. https://doi.org/10.1081/E-EBPP-120051253

  63. Mai TL, Joseph CW (2012) Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther 10:1039–1049

    Article  CAS  Google Scholar 

  64. Valeria C, Pamela M et al (2014) Polyurethane-based scaffolds for myocardial tissue engineering. Interface Focus 4:20130045

    Article  Google Scholar 

  65. Ian CA, Norsyahidah MH et al (2014) Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications. J Appl Polym Sci. https://doi.org/10.1002/APP.40533

  66. Helen MN, Elazer RE (2003) Tissue engineering therapy for cardiovascular disease. Circ Res 92:1068–1078

    Article  CAS  Google Scholar 

  67. Anne S, Raila B (2015) Polymers for cardiovascular stent coatings. Int J Polym Sci Article ID 782653, 11 pages

    Google Scholar 

  68. Ratchapol J, Phruedsaporn T et al (2015) Recent trend in applications of polymer materials to stents. Gastrointest Interv 4:83–88

    Article  Google Scholar 

  69. Peter X Ma (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198

    Google Scholar 

  70. Isabella CPR, Andreas K et al (2018) Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (São Paulo) 16: RB4538

    Google Scholar 

  71. Helen M, Nugent et al (2003) Tissue engineering therapy for cardiovascular disease. Circ Res 92:1068–1078

    Google Scholar 

  72. Naseer I, Abdul SK et al (2018) Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. Int Mater Rev. https://doi.org/10.1080/09506608.2018.1460943

  73. Pathiraja A, Gunatillake et al (2003) Biodegradable synthetic polymers for tissue engineering. P Eur Cells Mater 5:1–16

    Google Scholar 

  74. Van Dijkhuizen R, Moroni L et al (2008) Degradable polymers for tissue engineering. Tissue Eng 193–221 (Chapter 7). https://doi.org/10.1016/b978-0-12-370869-4.00007-0

  75. Brahatheeswaran D, Yasuhiko Y et al (2011) Polymeric scaffolds in tissue engineering application: a review, Int J Polym Sci Volume, Article ID 290602, 19 pages. https://doi.org/10.1155/2011/2906

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhi Daniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daniel, S. (2021). Biodegradable Polymeric Materials for Medicinal Applications. In: Thomas, S., Balakrishnan, P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_13

Download citation

Publish with us

Policies and ethics