Skip to main content

Lignin Nanoparticles and Their Biodegradable Composites

  • Chapter
  • First Online:
Green Composites

Abstract

The plant-based bioresources play a key role in fulfilling human needs and overall socio-economic development. The world of today uses a variety of bioresources, which emanate from sectors like forestry, agriculture, aquaculture, livestock, and bio-wastes. Lignin was once considered a waste by-product, but recently, it has developed into a large bio-industry that has infinite applications. This chapter provides a concise classification of lignin and lignin-based materials within the research field of bioresources and discusses its development as a raw material in nanoparticles and biodegradable composites. Various strategies for extraction, separation, and processing of lignin from plant material are explained. A detailed account of newly found applications of lignin, lignin nanoparticles, and their biodegradable composites is given for multidisciplinary areas, for instance, in pharmaceuticals, industry, and value-added products. The chapter closes with a precise discussion of the issues, challenges, and prospects of each lignin material in the context of the application, processing, and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ioelovich M (2015) Recent findings and the energetic potential of plant biomass as a renewable source of biofuels—a review, vol 10, p 36, 2015-01-08 2015

    Google Scholar 

  2. Krozer Y, Narodoslawsky M (2019) Economics of bioresources: concepts, tools, experiences. Springer International Publishing Imprint, Cham

    Book  Google Scholar 

  3. Jin J (1987) Protecting biological resources to sustain human progress. Ambio 16:262–266

    Google Scholar 

  4. Abdullah MFF, Ali MTBM, Yusof FZM (2018) Bioresources technology in sustainable agriculture: biological and biochemical research. Apple Academic Press, Waretown, NJ

    Book  Google Scholar 

  5. Höfer R, Selig M (2012) 10.02 - Green chemistry and green polymer chemistry. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 5–14

    Google Scholar 

  6. W. B. Association (2019) Global bioenergy statistics 2019

    Google Scholar 

  7. I. I. E. Agency. Renewables and waste. Available: https://www.iea.org/data-and-statistics/data-tables/?country=WORLD&year=2017&energy=Renewables%20%26%20waste

  8. Abdel-Shafy HI, Mansour MSM (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egyptian J Petroleum 27:1275–1290, 2018/12/01/

    Google Scholar 

  9. Körner I (2015) Chapter 7—Civilization biorefineries: efficient utilization of residue-based bioresources. In: Pandey A, Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C (eds) Industrial biorefineries & white biotechnology. Elsevier, Amsterdam, pp 295–340

    Google Scholar 

  10. Gaurav N, Sivasankari S, Kiran G, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sustain Energy Rev 73:205–214

    Article  CAS  Google Scholar 

  11. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624

    Article  CAS  Google Scholar 

  12. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41

    Article  CAS  Google Scholar 

  13. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. In: Industrial crops and products, vol 33, pp 259–276, 2011/03/01/

    Google Scholar 

  14. Rashid T, Kait CF, Regupathi I, Murugesan T (2016) Dissolution of kraft lignin using Protic Ionic Liquids and characterization. In: Industrial crops and products, vol 84, pp 284–293

    Google Scholar 

  15. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  16. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3:1227–1235

    Article  CAS  Google Scholar 

  17. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48

    Article  CAS  Google Scholar 

  18. Gargulak J, Lebo S. Commercial use of lignin-based materials. ACS Publications

    Google Scholar 

  19. Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Industrial Crops Prod 27:202–207

    Article  CAS  Google Scholar 

  20. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  21. Perez-Cantu L, Schreiber A, Schütt F, Saake B, Kirsch C, Smirnova I (2013) Comparison of pretreatment methods for rye straw in the second generation biorefinery: effect on cellulose, hemicellulose and lignin recovery. Bioresource Technol 142:428–435

    Article  CAS  Google Scholar 

  22. Liu Y, Zheng J, Xiao J, He X, Zhang K, Yuan S et al (2019) Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega 4:19829–19839

    Article  CAS  Google Scholar 

  23. Agbesola Y (2013) Sustainability of municipal solid waste management in Nigeria: a case study of Lagos

    Google Scholar 

  24. Salah M, El-Haggar PE (2007) Chapter 5—Sustainability of municipal solid waste management. In: Sustainable industrial design and waste management, pp 149–196

    Google Scholar 

  25. da Costa Sousa L, Chundawat SP, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opinion Biotechnol 20:339–347

    Google Scholar 

  26. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  27. Tutt M, Kikas T, Olt J (2012) Influence of different pretreatment methods on bioethanol production from wheat straw. Agronomy Res 10:269–276

    Google Scholar 

  28. Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng

    Google Scholar 

  29. Rashid T, Gnanasundaram N, Appusamy A, Kait CF, Thanabalan M (2018) Enhanced lignin extraction from different species of oil palm biomass: kinetics and optimization of extraction conditions. In: Industrial crops and products, vol 116, pp 122–136

    Google Scholar 

  30. Doherty WO, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops Prod 33:259–276

    Article  CAS  Google Scholar 

  31. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523

    Article  CAS  Google Scholar 

  32. Sixta H, Potthast, Antje, Krotschek, Andreas W (2008) Chemical pulping processes. Handbook of Pulp. Wiley VCH Verlag GmbH, vol. Sections -4.2.5 pp 109–229

    Google Scholar 

  33. Lourençon TV, Hansel FA, da Silva TA, Ramos LP, de Muniz GIB, Magalhães WLE (2015) Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. In: Separation and purification technology, vol 154, pp 82–88

    Google Scholar 

  34. Lu F, Ralph J (2010) Chapter 6—Lignin. In: Sun R-C (ed) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier, Amsterdam, pp 169–207

    Google Scholar 

  35. Sjostrom E (2013) Wood chemistry: fundamentals and applications. Elsevier

    Google Scholar 

  36. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Google Scholar 

  37. Erdocia X, Prado R, Corcuera MA, Labidi J (2014) Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. J Industrial Eng Chem 20:1103–1108

    Google Scholar 

  38. Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18:1839–1854

    Article  CAS  Google Scholar 

  39. Gomes FJB, Santos FA, Colodette JL, Demuner IF, Batalha LAR (2014) Literature review on biorefinery processes integrated to the pulp industry. Natural Resources 05(09):14

    Google Scholar 

  40. SjÖStrÖM E (1993) Chapter 4—LIGNIN. In: SjÖStrÖM Ed (ed) Wood Chemistry, 2nd edn. Academic Press, San Diego, pp 71–89

    Chapter  Google Scholar 

  41. Shimada K, Hosoya S, Ikeda T (1997) Condensation reactions of softwood and hardwood lignin model compounds under organic acid cooking conditions. J Wood Chem Technol 17:57–72

    Article  CAS  Google Scholar 

  42. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  CAS  Google Scholar 

  43. Mishra PK, Ekielski A (2019) A simple method to synthesize lignin nanoparticles. Colloids Interfaces 3:52

    Article  CAS  Google Scholar 

  44. Gao W, Fatehi P (2019) Lignin for polymer and nanoparticle production: current status and challenges. Canadian J Chem Eng 97:2827–2842

    Article  CAS  Google Scholar 

  45. Chauhan PS (2020) Lignin nanoparticles: eco-friendly and versatile tool for new era. Bioresource Technol Rep 9:100374

    Google Scholar 

  46. Frangville C, Rutkevičius M, Richter AP, Velev OD, Stoyanov SD, Paunov VN (2012) Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem 13:4235–4243

    Article  CAS  Google Scholar 

  47. Gutiérrez-Hernández JM, Escalante A, Murillo-Vázquez RN, Delgado E, González FJ, Toríz G (2016) Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. J Photochem Photobiol B: Biol 163:156–161

    Article  CAS  Google Scholar 

  48. Dai L, Liu R, Hu L-Q, Zou Z-F, Si C-L (2017) Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng 5:8241–8249

    Google Scholar 

  49. Liu Z-H, Hao N, Shinde S, Pu Y, Kang X, Ragauskas AJ et al (2019) Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chem 21:245–260

    Article  CAS  Google Scholar 

  50. Qian Y, Zhang Q, Qiu X, Zhu S (2014) CO2-responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO2/N2-switchable pickering emulsions. Green Chem 16:4963–4968

    Article  CAS  Google Scholar 

  51. Beisl S, Friedl A, Miltner A (2017) Lignin from micro-to nanosize: Applications. Int J Mol Sci 18:2367

    Article  CAS  Google Scholar 

  52. Myint AA, Lee HW, Seo B, Son W-S, Yoon J, Yoon TJ et al (2016) One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem 18:2129–2146

    Article  CAS  Google Scholar 

  53. Zhiming L, Chao L, Haiying W (2013) Preparation method of nanolignin with controllable particle size. Chinese Patent CN. 103145999A., Dated June 12, 2013

    Google Scholar 

  54. Zhiming L, Guochao L, Haiying W (2013) Preparation method of nanolignin with controllable particle size. Chinese patent CN A, vol. 103145999

    Google Scholar 

  55. Wang B, Sun D, Wang H-M, Yuan T-Q, Sun R-C (2019) Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. In: ACS sustainable chemistry & engineering, vol 7, pp 2658–2666

    Google Scholar 

  56. Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrasonics Sonochemistry 23:369–375

    Google Scholar 

  57. Garcia Gonzalez MN, Levi M, Turri S, Griffini G (2017) Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. J Appl Polym Sci 134:45318

    Google Scholar 

  58. Rangan A, Manchiganti MV, Thilaividankan RM, Kestur SG, Menon R (2017) Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers. In: Industrial crops and products, vol 103, pp 152–160

    Google Scholar 

  59. Juikar SJ, Vigneshwaran N (2017) Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis. In: Industrial crops and products, vol 109, pp 420–425

    Google Scholar 

  60. Richter AP, Bharti B, Armstrong HB, Brown JS, Plemmons D, Paunov VN et al (2016) Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir 32:6468–6477

    Article  CAS  Google Scholar 

  61. Lou R, Ma R, Lin K-T, Ahamed A, Zhang X ()2019 Facile extraction of wheat straw by Deep Eutectic Solvent (DES) to produce lignin nanoparticles. In: ACS sustainable chemistry & engineering, vol 7, pp 10248–10256

    Google Scholar 

  62. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  63. Dada OR, Abdulrahman KO, Akinlabi ET (2019) Production of biodegradable composites from agricultural waste. Biodegradable Compos Mater Manuf Eng 10:39

    CAS  Google Scholar 

  64. Rowell RM (1995) Composite materials from agricultural resources. In: Research in industrial application on non-food crops, I. plant fibres, pp 27–41

    Google Scholar 

  65. Ren H, Zhang Y, Zhai H, Chen J (2015) Production and evaluation of biodegradable composites based on polyhydroxybutyrate and polylactic acid reinforced with short and long pulp fibers. Cellul Chem Technol 49:641–652

    CAS  Google Scholar 

  66. Khan A, Colmenares JC, Gläser R (2020) Lignin based composite materials for photocatalysis and photovoltaics. In: Lignin Chemistry. Springer, Berlin, pp 1–31

    Google Scholar 

  67. Kazzaz AE, Feizi ZH, Fatehi P (2019) Grafting strategies for hydroxy groups of lignin for producing materials. Green Chem 21:5714–5752

    Article  Google Scholar 

  68. Xiong S-J, Pang B, Zhou S-J, Li M-K, Yang S, Wang Y-Y et al (2020) Economically-competitive biodegradable PBAT/lignin composites: effect of lignin methylation and compatibilizer. In: ACS Sustainable Chemistry & Engineering

    Google Scholar 

  69. Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200

    Article  CAS  Google Scholar 

  70. Ye J, Cheng Y, Sun L, Ding M, Wu C, Yuan D et al (2019) A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. J Membrane Sci 572:110–118

    Google Scholar 

  71. Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502

    Article  CAS  Google Scholar 

  72. Morsella M, d’Alessandro N, Lanterna AE, Scaiano JC (2016) Improving the sunscreen properties of TiO2 through an understanding of its catalytic properties. ACS Omega 1:464–469

    Google Scholar 

  73. Chung Y-L, Olsson JV, Li RJ, Frank CW, Waymouth RM, Billington SL et al (2013) A renewable lignin–lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1:1231–1238

    Article  CAS  Google Scholar 

  74. Domínguez-Robles J, Larrañeta E, Fong ML, Martin NK, Irwin NJ, Mutjé P et al (2020) Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications. Int J Biol Macromolecules 145:92–99

    Google Scholar 

  75. Hu L, Guang C, Liu Y, Su Z, Gong S, Yao Y et al (2020) Adsorption behavior of dyes from an aqueous solution onto composite magnetic lignin adsorbent. Chemosphere 246:125757, 2020/05/01/

    Google Scholar 

  76. Vaidya AA, Collet C, Gaugler M, Lloyd-Jones G (2019) Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing. Mater Today Commun 19:286–296

    Google Scholar 

  77. Rukmanikrishnan B, Ramalingam S, Rajasekharan SK, Lee J, Lee J (2020) Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: biocompatibility, antioxidant activity, UV and water barrier properties. Int J Biol Macromolecules 153:55–62

    Google Scholar 

  78. Kumar Singla R, Maiti SN, Ghosh AK (2016) Crystallization, morphological, and mechanical response of poly (lactic acid)/lignin-based biodegradable composites. Polymer-Plastics Technol Eng 55:475–485

    Google Scholar 

  79. Feldman D (2016) Lignin nanocomposites. J Macromolecular Sci Part A 53:382–387

    Article  CAS  Google Scholar 

  80. Yang W, Rallini M, Wang D-Y, Gao D, Dominici F, Torre L et al (2018) Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. In: Composites Part A: applied science and manufacturing, vol 107, pp 61–69

    Google Scholar 

  81. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63

    Article  Google Scholar 

  82. Cai X, Riedl B, Zhang S, Wan H (2008) The impact of the nature of nanofillers on the performance of wood polymer nanocomposites. Compos Part A Appl Sci Manuf 39:727–737

    Article  CAS  Google Scholar 

  83. Yang W, Kenny JM, Puglia D (2015) Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Industrial Crops Prod 74:348–356

    Article  CAS  Google Scholar 

  84. Yang W, Owczarek J, Fortunati E, Kozanecki M, Mazzaglia A, Balestra G et al (2016) Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops Prod 94:800–811

    Article  CAS  Google Scholar 

  85. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra G et al (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12

    Article  CAS  Google Scholar 

  86. Jiang C, He H, Jiang H, Ma L, Jia D (2013) Nano-lignin filled natural rubber composites: preparation and characterization. Express Polym Lett 7

    Google Scholar 

  87. Gupta AK, Mohanty S, Nayak S (2015) Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly (trimethylene terephthalate) hybrid nanocomposites. RSC Adv 5:56028–56036

    Article  CAS  Google Scholar 

  88. Yang W, Fortunati E, Dominici F, Kenny J, Puglia D (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139

    Article  CAS  Google Scholar 

  89. Yang X, Zhong S (2020) Properties of maleic anhydride‐modified lignin nanoparticles/polybutylene adipate‐co‐terephthalate composites. J Appl Polym Sci 49025

    Google Scholar 

  90. Li X, Hegyesi N, Zhang Y, Mao Z, Feng X, Wang B et al (2019) Poly (lactic acid)/lignin blends prepared with the Pickering emulsion template method. Eur Polym J 110:378–384

    Article  CAS  Google Scholar 

  91. Kayserilioǧlu BŞ, Bakir U, Yilmaz L, Akkaş N (2003) Drying temperature and relative humidity effects on wheat gluten film properties. J Agric Food Chem 51:964–968

    Google Scholar 

  92. Chollet B, Lopez-Cuesta J-M, Laoutid F, Ferry L (2019) Lignin nanoparticles as a promising way for enhancing lignin flame retardant effect in polylactide. Materials 12:2132

    Article  CAS  Google Scholar 

  93. Ju T, Zhang Z, Li Y, Miao X, Ji J (2019) Continuous production of lignin nanoparticles using a microchannel reactor and its application in UV-shielding films. RSC Adv 9:24915–24921

    Article  CAS  Google Scholar 

  94. Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. Reactive Functional Polym 85:78–96

    Google Scholar 

  95. Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro-and nano-structured materials. Reactive Functional Polym 85:78–96

    Article  CAS  Google Scholar 

  96. Si M, Zhang J, He Y, Yang Z, Yan X, Liu M et al (2018) Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose. Green Chem 20:3414–3419

    Article  CAS  Google Scholar 

  97. Pillai MM, Karpagam K, Begam R, Selvakumar R, Bhattacharyya A (2018) Green synthesis of lignin based fluorescent nanocolorants for live cell imaging. Mater Lett 212:78–81

    Article  CAS  Google Scholar 

  98. Gillet S, Aguedo M, Petitjean L, Morais A, da Costa Lopes A, Łukasik R et al (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19:4200–4233

    Google Scholar 

  99. Beisl S, Miltner A, Friedl A (2017) Lignin from micro-to nanosize: production methods. Int J Mol Sci 18:1244

    Article  CAS  Google Scholar 

  100. Vinardell MP, Mitjans M (2017) Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci 18:1219

    Article  CAS  Google Scholar 

  101. Fernández-Pérez M, Villafranca-Sánchez M, Flores-Céspedes F (2007) Controlled-release formulations of cyromazine-lignin matrix coated with ethylcellulose. J Environ Sci Health 42:863–868

    Article  CAS  Google Scholar 

  102. Shankar S, Rhim J-W (2017) Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids 71:76–84

    Article  CAS  Google Scholar 

  103. Lee J-B, Yamagishi C, Hayashi K, Hayashi T (2011) Antiviral and immunostimulating effects of lignin-carbohydrate-protein complexes from Pimpinella anisum. Biosci Biotechnol Biochem 1101242356-1101242356

    Google Scholar 

  104. Karim QA, Karim SSA, Frohlich JA, Grobler AC, Baxter C, Mansoor LE et al (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329:1168–1174

    Google Scholar 

  105. Lin X, Zhao J, Wu M, Kuga Sh HY (2016) Green synthesis of gold, platinum and palladium nanoparticles by lignin and hemicellulose. J Microbiol Biotechnol 5:14–18

    Google Scholar 

  106. Li P, Lv W, Ai S (2016) Green and gentle synthesis of Cu2O nanoparticles using lignin as reducing and capping reagent with antibacterial properties. J Exp Nanosci 11:18–27

    Article  CAS  Google Scholar 

  107. Bian H, Jiao L, Wang R, Wang X, Zhu W, Dai H (2018) Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel. Eur Polym J 107:267–274

    Article  CAS  Google Scholar 

  108. Iravani S, Varma RS (2019) Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem 21:4839–4867

    Article  CAS  Google Scholar 

  109. Chen Y, Zheng K, Niu L, Zhang Y, Liu Y, Wang C et al (2019) Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int J Biol Macromolecules 128:414–420

    Article  CAS  Google Scholar 

  110. Klapiszewski Ł, Rzemieniecki T, Krawczyk M, Malina D, Norman M, Zdarta J et al (2015) Kraft lignin/silica–AgNPs as a functional material with antibacterial activity. Colloids Surf B Biointerfaces 134:220–228

    Article  CAS  Google Scholar 

  111. Yiamsawas D, Beckers SJ, Lu H, Landfester K, Wurm FR (2017) Morphology-controlled synthesis of lignin nanocarriers for drug delivery and carbon materials. ACS Biomater Sci Eng 3:2375–2383

    Article  CAS  Google Scholar 

  112. Gan D, Xing W, Jiang L, Fang J, Zhao C, Ren F et al (2019) Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nature Commun 10:1–10

    Article  CAS  Google Scholar 

  113. Pang Y, Wang S, Qiu X, Luo Y, Lou H, Huang J (2017) Preparation of lignin/sodium dodecyl sulfate composite nanoparticles and their application in pickering emulsion template-based microencapsulation. J Agricultural Food Chem 65:11011–11019

    Article  CAS  Google Scholar 

  114. ur Rahman O, Shi S, Ding J, Wang D, Ahmad S, Yu H (2018) Lignin nanoparticles: synthesis, characterization and corrosion protection performance. New J Chem 42:3415–3425

    Google Scholar 

  115. Milczarek G, Nowicki M (2013) Carbon nanotubes/kraft lignin composite: characterization and charge storage properties. Mater Res Bull 48:4032–4038

    Article  CAS  Google Scholar 

  116. Wang X, Han G, Shen Z, Sun R (2015) Fabrication, property, and application of Lignin-Based nanocomposites. In: Eco-friendly polymer nanocomposites. Springer, Berlin, pp 73–99

    Google Scholar 

  117. Iravani S, Varma RS (2020) Greener synthesis of lignin nanoparticles and their applications. Green Chem 22:612–636

    Article  CAS  Google Scholar 

  118. Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 19:409–416

    Article  CAS  Google Scholar 

  119. Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Progr Mater Sci 93:233–269

    Article  CAS  Google Scholar 

  120. Alqahtani MS, Alqahtani A, Al-Thabit A, Roni M, Syed R (2019) Novel lignin nanoparticles for oral drug delivery. J Mater Chem B 7:4461–4473

    Article  CAS  Google Scholar 

  121. Figueiredo P, Sipponen MH, Lintinen K, Correia A, Kiriazis A, Yli-Kauhaluoma J et al (2019) Preparation and characterization of dentin phosphophoryn-derived peptide-functionalized lignin nanoparticles for enhanced cellular uptake. Small 15:1901427

    Article  CAS  Google Scholar 

  122. Zou T, Sipponen MH, Österberg M (2019) Natural shape-retaining microcapsules with shells made of chitosan-coated colloidal lignin particles. Front Chem 7:370

    Google Scholar 

  123. Li Y, Yang D, Lu S, Lao S, Qiu X (2018) Modified lignin with anionic surfactant and its application in controlled release of avermectin. J Agricultural Food Chem 66:3457–3464

    Article  CAS  Google Scholar 

  124. Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Mater Sci Eng, C 32:452–463

    Article  CAS  Google Scholar 

  125. Figueiredo P, Ferro C, Kemell M, Liu Z, Kiriazis A, Lintinen K et al (2017) Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine 12:2581–2596

    Article  CAS  Google Scholar 

  126. Bhat AH, Dasan YK, Khan I (2015) Extraction of lignin from biomass for biodiesel production. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer International Publishing, Cham, pp 155–179

    Google Scholar 

  127. Sato T, Furusawa T, Ishiyama Y, Sugito H, Miura Y, Sato M et al (2006) Effect of water density on the gasification of lignin with magnesium oxide supported nickel catalysts in supercritical water. Industrial Eng Chem Res 45:615–622

    Article  CAS  Google Scholar 

  128. Osada M, Sato O, Watanabe M, Arai K, Shirai M (2006) Water density effect on lignin gasification over supported noble metal catalysts in supercritical water. Energy Fuels 20:930–935

    Article  CAS  Google Scholar 

  129. Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35:232–242

    Google Scholar 

  130. Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion Manage 45:651–671

    Google Scholar 

  131. Bai X, Kim KH (2016) Biofuels and chemicals from lignin based on pyrolysis. In: Fang Z, Smith JRL (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 263–287

    Google Scholar 

  132. Pei JCGLL, Xin AG (2007) Experimental investigation on hydrogen production by gasification of lignin in supercritical water. Acta Energiae Solaris Sinica 9

    Google Scholar 

  133. Kang K, Azargohar R, Dalai AK, Wang H (2015) Noncatalytic gasification of lignin in supercritical water using a batch reactor for hydrogen production: an experimental and modeling study. Energy Fuels 29:1776–1784

    Article  CAS  Google Scholar 

  134. Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Industrial Eng Chem Res 51:9023–9031

    Article  CAS  Google Scholar 

  135. Budnyak TM, Slabon A, Sipponen MH (2020) Lignin–inorganic interfaces: chemistry and applications from adsorbents to catalysts and energy storage materials. ChemSusChem

    Google Scholar 

  136. Sipponen MH, Lange H, Ago M, Crestini C (2018) Understanding lignin aggregation processes. A case study: budesonide entrapment and stimuli controlled release from lignin nanoparticles. In: ACS sustainable chemistry & engineering, vol 6, pp 9342–9351

    Google Scholar 

  137. Li J, He Y, Inoue Y (2001) Study on thermal and mechanical properties of biodegradable blends of poly(ε-caprolactone) and lignin. Polym J 33:336–343

    Google Scholar 

  138. Sipponen MH, Henn A, Penttilä P, Österberg M (2020) Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials. Chem Eng J 124711

    Google Scholar 

  139. Li H, Yuan D, Tang C, Wang S, Sun J, Li Z et al (2016) Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100:151–157

    Google Scholar 

  140. Zhang W, Zhao M, Liu R, Wang X, Lin H (2015) Hierarchical porous carbon derived from lignin for high performance supercapacitor. Colloids Surf A: Physicochem Eng Aspects 484:518–527

    Google Scholar 

  141. Rahman OU, Shi S, Ding J, Wang D, Ahmad S, Yu H (2018) Lignin nanoparticles: synthesis, characterization and corrosion protection performance. New J Chem 42:3415–3425

    Google Scholar 

  142. Setälä H, Alakomi H-L, Paananen A, Szilvay GR, Kellock M, Lievonen M et al (2020) Lignin nanoparticles modified with tall oil fatty acid for cellulose functionalization. Cellulose 27:273–284

    Google Scholar 

  143. Anwer MA, Naguib HE, Celzard A, Fierro V (2015) Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites. Compos Part B Eng 82:92–99

    Article  CAS  Google Scholar 

  144. Park Y, Doherty WOS, Halley PJ (2008) Developing lignin-based resin coatings and composites. In: Industrial crops and products, vol 27, pp 163–167

    Google Scholar 

  145. Frollini E, Paiva JMF, Trindade WG, Tanaka Razera IA, Tita SP (2004) Plastics and composites from lignophenols. In: Wallenberger FT, Weston NE (eds) Natural fibers, plastics and composites. Springer US, Boston, MA, pp 193–225

    Google Scholar 

  146. Zheng C, Li D, Ek M (2019) Improving fire retardancy of cellulosic thermal insulating materials by coating with bio-based fire retardants. Nordic Pulp Paper Res J 34:96–106

    Article  CAS  Google Scholar 

  147. Mishra PK, Wimmer R (2017) Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition. Ultrasonics Sonochemistry 35:45–50

    Google Scholar 

  148. Lee SC, Yoo E, Lee SH, Won K (2020) Preparation and application of light-colored lignin nanoparticles for broad-spectrum sunscreens. Polymers 12:699

    Article  CAS  Google Scholar 

  149. Qian Y, Qiu X, Zhu S (2016) Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustain Chem Eng 4,:4029–4035, 2016/07/05

    Google Scholar 

  150. Morsella M, Giammatteo M, Arrizza L, Tonucci L, Bressan M, d’Alessandro N (2015) Lignin coating to quench photocatalytic activity of titanium dioxide nanoparticles for potential skin care applications. RSC Adv 5:57453–57461

    Article  CAS  Google Scholar 

  151. Qian Y, Qiu X, Zhong X, Zhang D, Deng Y, Yang D et al (2015) Lignin reverse micelles for UV-absorbing and high mechanical performance thermoplastics. Industrial Eng Chem Res 54:12025–12030

    Google Scholar 

  152. Dastpak A, Yliniemi K, De Oliveira Monteiro MC, Höhn S, Virtanen S, Lundström M et al (2018) From waste to valuable resource: lignin as a sustainable anti-corrosion coating. Coatings 8:454

    Google Scholar 

  153. Henn A, Mattinen M-L (2019) Chemo-enzymatically prepared lignin nanoparticles for value-added applications. World J Microbiol Biotechnol 35:125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors are thankful to their affiliated institutions for providing of the academic and support facilities for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Nasir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nasir, R. et al. (2021). Lignin Nanoparticles and Their Biodegradable Composites. In: Thomas, S., Balakrishnan, P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_11

Download citation

Publish with us

Policies and ethics