Skip to main content

Magnets, Magnetism, and Magnetic Resonance Imaging: History, Basics, Clinical Aspects, and Future Directions

  • Chapter
  • First Online:
Modern Techniques in Biosensors

Abstract

Magnets and magnetism have played an intriguing and controversial role in human medicine. Undoubtedly, the most relevant use of magnetic phenomenon in modern clinics pertains to the diagnostic potential of Magnetic Resonance Imaging (MRI) that employs low-intensity radiofrequency electromagnetic radiation to study subjects placed in a strong magnetic field. The physical basis of MRI lies in its inherent ability to monitor the temporal and spatial distribution of tissue water protons, in the process taking into account local abnormalities to generate images with variable contrast. The contrast produced in MRI is further enhanced by the administration of paramagnetic entities called contrast agents that allow for superior spatial resolution in MRI. This chapter gives a glimpse into the history and development of MRI as a diagnostic imaging tool. The fundamentals of the MRI technique, contrast agent design, their current clinical status, and future directions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chakravarty, S.: Closomers at a click: a treatise on the design, synthesis and in vivo MRI of novel click closomers as high performance and efficacious contrast agents. University of Missouri, Columbia (2013)

    Google Scholar 

  2. Peregrinus, P.: Epistola Petri Peregrini de Maricourt ad Sygerum de Foucaucourt, Militem, De Magnete. Privately Published, Italy (1269)

    Google Scholar 

  3. Gilbert, W.: De Magnete, Magneticisque, Corporibus, et de Magno Magnete Tellure; Physiologica Nova (On the lodestone, magnetic bodies, and on the great magnet the earth). Dover (Paperback republication, 1991, Translation: Mottelay, P.F.), New York (1600)

    Google Scholar 

  4. Mourino, M.R.: From Thales to Lauterbur, or from the lodestone to MR imaging: magnetism and medicine. Radiology 180, 593–612 (1991). https://doi.org/10.1148/radiology.180.3.1871268https://doi.org/10.1148/radiology.180.3.1871268

    Article  Google Scholar 

  5. Mitchell, A.C.: Chapters in the history of terrestrial magnetism. Terr. Magn. Atmos. Electr. 44, 77–80 (1939). https://doi.org/10.1029/TE044i001p00077https://doi.org/10.1029/TE044i001p00077

    Article  Google Scholar 

  6. Häfeli, U.: The history of magnetism in medicine. In: Magnetism in Medicine, pp. 1–25 (2006)

    Google Scholar 

  7. Macklis, R.M.: Magnetic healing, quackery, and the debate about the health effects of electromagnetic fields. Ann. Int. Med. 118, 376–383 (1993). https://doi.org/10.7326/0003-4819-118-5-199303010-00009https://doi.org/10.7326/0003-4819-118-5-199303010-00009

    Article  Google Scholar 

  8. Lord Butterfield of Stechford: Dr Gilbert’s magnetism. Lancet 338, 1576–1579 (1991). https://doi.org/10.1016/0140-6736(91)92388-I

  9. Shermer, M.: Mesmerized by magnetism. Sci. Am. 287 (2002)

    Google Scholar 

  10. Livingston, J.D.: Driving force: the natural magic of magnets, 1st edn. Harvard University Press, Cambridge (1996)

    Google Scholar 

  11. Asti, G., Solzi, M.: Permanent magnets. In: Gerber, R., Wright, C.D., Asti, G. (eds.) Applied Magnetism, pp. 309–375. Springer, Dordrecht (1994)

    Chapter  Google Scholar 

  12. Hilai, S.K., Jost Michelsen, W., Driller, J., Leonard, E.: Magnetically guided devices for vascular exploration and treatment. Radiology 113, 529–540 (1974). https://doi.org/10.1148/113.3.529https://doi.org/10.1148/113.3.529

    Article  Google Scholar 

  13. Ram, W., Meyer, H.: Heart catheterization in a neonate by interacting magnetic fields: a new and simple method of catheter guidance. Cathet. Cardiovasc. Diagn 22, 317–319 (1991). https://doi.org/10.1002/ccd.1810220412https://doi.org/10.1002/ccd.1810220412

    Article  Google Scholar 

  14. McNeil, R.G., Ritter, R.C., Wang, B., et al.: Characteristics of an improved magnetic-implant guidance system. IEEE Trans. Biomed. Eng. 42, 802–808 (1995). https://doi.org/10.1109/10.398641https://doi.org/10.1109/10.398641

    Article  Google Scholar 

  15. Poznansky, M.J., Juliano, R.L.: Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol. Rev. 36, 277–336 (1984)

    Google Scholar 

  16. Rand, R.W., Snyder, M., Elliott, D., Snow, H.: Selective radiofrequency heating of ferrosilicone occluded tissue: a preliminary report. Bull. Los Angeles Neurol. Soc. 41, 154–159 (1976)

    Google Scholar 

  17. Sako, M., Hirota, S., Morita, M., et al.: Clinical evaluation of ferromagnetic microembolization in the treatment of hepatoma. Nihon Gan Chiryo Gakkai Shi 20, 1317–1326 (1985)

    Google Scholar 

  18. Chan, D.C.F., Kirpotin, D.B., Bunn, P.A.: Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater. 122, 374–378 (1993). https://doi.org/10.1016/0304-8853(93)91113-L

  19. Jordan, A., Scholz, R., Maier-Hauff, K., et al.: Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001). https://doi.org/10.1016/S0304-8853(00)01239-7

  20. Gneveckow, U., Jordan, A., Scholz, R., et al.: Description and characterization of the novel hyperthermia- and thermoablation-system for clinical magnetic fluid hyperthermia. Med. Phys. 31, 1444–1451 (2004). https://doi.org/10.1118/1.1748629https://doi.org/10.1118/1.1748629

    Article  Google Scholar 

  21. Maier-Hauff, K., Rothe, R., Scholz, R., et al.: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81, 53–60 (2007). https://doi.org/10.1007/s11060-006-9195-0https://doi.org/10.1007/s11060-006-9195-0

    Article  Google Scholar 

  22. Wahsner, J., Gale, E.M., Rodríguez-Rodríguez, A., Caravan, P.: Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev. 119, 957–1057 (2019). https://doi.org/10.1021/acs.chemrev.8b00363https://doi.org/10.1021/acs.chemrev.8b00363

    Article  Google Scholar 

  23. Pysz, M.A., Gambhir, S.S., Willmann, J.K.: Molecular imaging: current status and emerging strategies. Clin. Radiol. 65, 500–516 (2010). https://doi.org/10.1016/j.crad.2010.03.011

  24. Glover, G.H.: Overview of Functional Magnetic Resonance Imaging. Neurosurg. Clin. N. Am. 22, 133–139 (2011). https://doi.org/10.1016/j.nec.2010.11.001

  25. Runge, V.M.: Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMAʼs pharmacovigilance and risk assessment committee recommend. Invest. Radiol. 52, 317–323 (2017). https://doi.org/10.1097/RLI.0000000000000374https://doi.org/10.1097/RLI.0000000000000374

    Article  Google Scholar 

  26. Doan, B.-T., Meme, S., Beloeil, J.-C.: General principles of MRI. Chem. Contrast Agents Med. Magn. Reson. Imaging 1–23 (2013)

    Google Scholar 

  27. Bloch, F., Hansen, W.W., Packard, M.: The nuclear induction experiment. Phys. Rev. 70, 474–485 (1946). https://doi.org/10.1103/PhysRev.70.474https://doi.org/10.1103/PhysRev.70.474

    Article  Google Scholar 

  28. Solomon, I.: Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565 (1955). https://doi.org/10.1103/PhysRev.99.559https://doi.org/10.1103/PhysRev.99.559

    Article  Google Scholar 

  29. Bloembergen, N.: Proton relaxation times in paramagnetic solutions. J. Chem. Phys. 27, 572–573 (1957). https://doi.org/10.1063/1.1743771https://doi.org/10.1063/1.1743771

    Article  Google Scholar 

  30. Lipari, G., Szabo, A.: Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982a). https://doi.org/10.1021/ja00381a009https://doi.org/10.1021/ja00381a009

    Article  Google Scholar 

  31. Lipari, G., Szabo, A.: Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570 (1982b). https://doi.org/10.1021/ja00381a010https://doi.org/10.1021/ja00381a010

    Article  Google Scholar 

  32. Banci, L., Bertini, I., Luchinat, C.: Nuclear and Electron Relaxation. VCH, Weinheim (1991)

    Google Scholar 

  33. Eisinger, J., Shulman, R.G., Blumberg, W.E.: Relaxation enhancement by paramagnetic ion binding in deoxyribonucleic acid solutions. Nature 192, 963–964 (1961). https://doi.org/10.1038/192963a0https://doi.org/10.1038/192963a0

    Article  Google Scholar 

  34. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973). https://doi.org/10.1038/242190a0https://doi.org/10.1038/242190a0

    Article  Google Scholar 

  35. Mansfield, P., Maudsley, A.A.: Planar spin imaging by NMR. J. Magn. Reson. 27, 101–119 (1977). https://doi.org/10.1016/0022-2364(77)90197-4

  36. Hinshaw, W.S., Bottomley, P.A., Holland, G.N.: Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270, 722–723 (1977). https://doi.org/10.1038/270722a0https://doi.org/10.1038/270722a0

    Article  Google Scholar 

  37. Pykett, I.L., Hinshaw, W.S., Buonanno, F.S., et al.: Physical principles of NMR imaging. Curr. Probl. Cancer 7, 37–50 (1982). https://doi.org/10.1016/S0147-0272(82)80009-3

  38. Lauterbur, P.C.: NMR zeugmatographic imaging in medicine. J. Med. Syst. 6, 591–597 (1982). https://doi.org/10.1007/BF00995509https://doi.org/10.1007/BF00995509

    Article  Google Scholar 

  39. Brady, T.J., Goldman, M.R., Pykett, I.L., et al.: Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effect of paramagnetic proton signal enhancement. Radiology 144, 343–347 (1982). https://doi.org/10.1148/radiology.144.2.6283594https://doi.org/10.1148/radiology.144.2.6283594

    Article  Google Scholar 

  40. Young, I.R., Clarke, G.J., Baffles, D.R., et al.: Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J. Comput. Tomogr. 5, 543–547 (1981). https://doi.org/10.1016/0149-936X(81)90089-8

  41. Carr, D.H., Brown, J., Bydder, G.M., et al.: Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumors. Lancet 323, 484–486 (1984). https://doi.org/10.1016/S0140-6736(84)92852-6

  42. Carr, D.H., Brown, J., Bydder, G.M., et al.: Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. Am. J. Roentgenol. 143, 215–224 (1984). https://doi.org/10.2214/ajr.143.2.215https://doi.org/10.2214/ajr.143.2.215

    Article  Google Scholar 

  43. Clare, S.: Functional MRI: Methods and Applications. University of Nottingham (1997)

    Google Scholar 

  44. Vlaardingerbroek, M.T., den Boer, J.A.: Magnetic Resonance Imaging. Springer, Berlin (2003)

    Google Scholar 

  45. Dale, B.M., Brown, M.A., Semelka, R.C.: Instrumentation. In: Dale, B.M., Brown, M.A., Semelka, R.C. (eds.) MRI Basic Principles and Applications, pp. 177–188 (2015)

    Google Scholar 

  46. Smith, R.C., Lange, R.C.: Understanding Magnetic Resonance Imaging, 1st edn. CRC Press, New York (1997)

    Google Scholar 

  47. Weishaupt, D., Köchli, V.D., Marincek, B.: How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  48. Geraldes, C.F.G.C., Laurent, S.: Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 4, 1–23 (2009). https://doi.org/10.1002/cmmi.265https://doi.org/10.1002/cmmi.265

    Article  Google Scholar 

  49. Hao, D., Ai, T., Goerner, F., et al.: MRI contrast agents: basic chemistry and safety. J. Magn. Reson. Imaging 36, 1060–1071 (2012). https://doi.org/10.1002/jmri.23725https://doi.org/10.1002/jmri.23725

    Article  Google Scholar 

  50. Tóth, É., Helm, L., Merbach, A.E.: Relaxivity of MRI contrast agents. In: Krause, W. (ed.) Contrast Agents I: Magnetic Resonance Imaging, pp. 61–101. Springer, Berlin (2002)

    Chapter  Google Scholar 

  51. Muller, R.N., Vander Elst, L., Roch, A., et al.: Relaxation by Metal-Containing Nanosystems, pp. 239–292. Academic Press (2005)

    Google Scholar 

  52. Chan, K.W.-Y., Wong, W.-T.: Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coord. Chem. Rev. 251, 2428–2451 (2007). https://doi.org/10.1016/j.ccr.2007.04.018

  53. Werner, E.J., Datta, A., Jocher, C.J., Raymond, K.N.: High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew. Chem. Int. Ed. 47, 8568–8580 (2008). https://doi.org/10.1002/anie.200800212https://doi.org/10.1002/anie.200800212

    Article  Google Scholar 

  54. Viswanathan, S., Kovacs, Z., Green, K.N., et al.: Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 110, 2960–3018 (2010). https://doi.org/10.1021/cr900284ahttps://doi.org/10.1021/cr900284a

    Article  Google Scholar 

  55. Zhou, Z., Lu, Z.R.: Gadolinium-based contrast agents for magnetic resonance cancer imaging. WIREs Nanomed. Nanobiotechnol. 5, 1–18 (2013). https://doi.org/10.1002/wnan.1198https://doi.org/10.1002/wnan.1198

    Article  Google Scholar 

  56. Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B.: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999). https://doi.org/10.1021/cr980440xhttps://doi.org/10.1021/cr980440x

    Article  Google Scholar 

  57. Koenig, S.H., Brown, R.D., III., Spiller, M., Lundbom, N.: Relaxometry of brain: why white matter appears bright in MRI. Magn. Reson. Med. 14, 482–495 (1990). https://doi.org/10.1002/mrm.1910140306https://doi.org/10.1002/mrm.1910140306

    Article  Google Scholar 

  58. McDonald, R.J., Levine, D., Weinreb, J., et al.: Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 289, 517–534 (2018). https://doi.org/10.1148/radiol.2018181151https://doi.org/10.1148/radiol.2018181151

    Article  Google Scholar 

  59. Hermann, P., Kotek, J., Kubíček, V., Lukeš, I.: Gadolinium(iii) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalt. Trans. 3027–3047 (2008). https://doi.org/10.1039/B719704G

  60. Clough, T.J., Jiang, L., Wong, K.L., Long, N.J.: Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat. Commun. 10, 1420 (2019). https://doi.org/10.1038/s41467-019-09342-3https://doi.org/10.1038/s41467-019-09342-3

    Article  Google Scholar 

  61. De León-Rodríguez, L.M., Martins, A.F., Pinho, M.C., et al.: Basic MR relaxation mechanisms and contrast agent design. J. Magn. Reson. Imaging 42, 545–565 (2015). https://doi.org/10.1002/jmri.24787https://doi.org/10.1002/jmri.24787

    Article  Google Scholar 

  62. Yang, C.T., Chuang, K.H.: Gd(iii) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood–brain barrier permeable. Med. Chem. Commun. 3, 552–565 (2012). https://doi.org/10.1039/C2MD00279Ehttps://doi.org/10.1039/C2MD00279E

    Article  Google Scholar 

  63. Kang, S.I., Ranganathan, R.S., Emswiler, J.E., et al.: Synthesis, characterization, and crystal structure of the gadolinium(III) chelate of (1R,4R,7R)-.alpha., alpha′., alpha″.-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3MA). Inorg. Chem. 32, 2912–2918 (1993). https://doi.org/10.1021/ic00065a019https://doi.org/10.1021/ic00065a019

    Article  Google Scholar 

  64. Chang, C.A., Francesconi, L.C., Malley, M.F., et al.: Synthesis, characterization, and crystal structures of M(DO3A) (M = iron, gadolinium) and Na[M(DOTA)] (M = Fe, yttrium, Gd). Inorg. Chem. 32, 3501–3508 (1993). https://doi.org/10.1021/ic00068a020https://doi.org/10.1021/ic00068a020

    Article  Google Scholar 

  65. Aime, S., Botta, M., Fasano, M., Terreno, E.: Lanthanide(III) chelates for NMR biomedical applications. Chem. Soc. Rev. 27, 19–29 (1998). https://doi.org/10.1039/A827019Zhttps://doi.org/10.1039/A827019Z

    Article  Google Scholar 

  66. Caravan, P.: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35, 512–523 (2006). https://doi.org/10.1039/B510982Phttps://doi.org/10.1039/B510982P

    Article  Google Scholar 

  67. Aime, S., Barge, A., Batsanov, A.S. et al.: Controlling the variation of axial water exchange rates in macrocyclic lanthanide(iii) complexes. Chem. Commun. 1120–1121 (2002). https://doi.org/10.1039/B202862J

  68. Thompson, A.L., Parker, D., Fulton, D.A., et al.: On the role of the counter-ion in defining water structure and dynamics: order, structure and dynamics in hydrophilic and hydrophobic gadolinium salt complexes. Dalt. Trans. 5605–5616 (2006). https://doi.org/10.1039/B606206G

  69. Caravan, P., Farrar, C.T., Frullano, L., Uppal, R.: Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 4, 89–100 (2009). https://doi.org/10.1002/cmmi.267https://doi.org/10.1002/cmmi.267

    Article  Google Scholar 

  70. Ibrahim, M.A., Hazhirkarzar, B., Dublin, A.B.: Magnetic Resonance imaging (MRI) gadolinium. In: StatPearls Publ. Treasure Isl. https://www.ncbi.nlm.nih.gov/books/NBK482487/. Accessed 5 May 2020

  71. Magnevist® (gadopentetate dimeglumine) injection 0.5 mmol/mL. https://www.radiologysolutions.bayer.com/sites/g/files/kmftyc641/files/MVEOSLetter-GPOPDFR8v1.pdf. Accessed 8 July 2020

  72. Gadolinium-Containing Contrast Agents. https://www.ema.europa.eu/en/medicines/human/referrals/gadolinium-containing-contrast-agents. Accessed 8 July 2020

  73. Li, D., Larson, A.C., Speck, O., et al.: Modern applications of MRI in medical sciences. Magn. Med. 343–476 (2006)

    Google Scholar 

  74. Caravan, P.: Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc. Chem. Res. 42, 851–862 (2009). https://doi.org/10.1021/ar800220phttps://doi.org/10.1021/ar800220p

    Article  Google Scholar 

  75. Laurent, S., Vander, E.L., Muller, R.N.: Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol. Imaging 1, 128–137 (2006). https://doi.org/10.1002/cmmi.100https://doi.org/10.1002/cmmi.100

    Article  Google Scholar 

  76. Prince, M.R., Zhang, H., Zou, Z., et al.: Incidence of immediate gadolinium contrast media reactions. Am. J. Roentgenol. 196, W138–W143 (2011). https://doi.org/10.2214/AJR.10.4885https://doi.org/10.2214/AJR.10.4885

    Article  Google Scholar 

  77. Grobner, T.: Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant. 21, 1104–1108 (2006). https://doi.org/10.1093/ndt/gfk062https://doi.org/10.1093/ndt/gfk062

    Article  Google Scholar 

  78. Idée, J.-M., Port, M., Medina, C., et al.: Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology 248, 77–88 (2008). https://doi.org/10.1016/j.tox.2008.03.012

  79. Kanda, T., Fukusato, T., Matsuda, M., et al.: Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276, 228–232 (2015). https://doi.org/10.1148/radiol.2015142690https://doi.org/10.1148/radiol.2015142690

    Article  Google Scholar 

  80. Thomsen, H.S., Morcos, S.K., Almén, T., et al.: Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 23, 307–318 (2013). https://doi.org/10.1007/s00330-012-2597-9https://doi.org/10.1007/s00330-012-2597-9

    Article  Google Scholar 

  81. Brücher, E., Tircsó, G., Baranyai, Z., et al.: Stability and toxicity of contrast agents. In: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, pp. 157–208. John Wiley & Sons Ltd., Chichester (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shatadru Chakravarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakravarty, S., Shapiro, E.M. (2021). Magnets, Magnetism, and Magnetic Resonance Imaging: History, Basics, Clinical Aspects, and Future Directions. In: Dutta, G., Biswas, A., Chakrabarti, A. (eds) Modern Techniques in Biosensors. Studies in Systems, Decision and Control, vol 327. Springer, Singapore. https://doi.org/10.1007/978-981-15-9612-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9612-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9611-7

  • Online ISBN: 978-981-15-9612-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics