Abstract
Magnets and magnetism have played an intriguing and controversial role in human medicine. Undoubtedly, the most relevant use of magnetic phenomenon in modern clinics pertains to the diagnostic potential of Magnetic Resonance Imaging (MRI) that employs low-intensity radiofrequency electromagnetic radiation to study subjects placed in a strong magnetic field. The physical basis of MRI lies in its inherent ability to monitor the temporal and spatial distribution of tissue water protons, in the process taking into account local abnormalities to generate images with variable contrast. The contrast produced in MRI is further enhanced by the administration of paramagnetic entities called contrast agents that allow for superior spatial resolution in MRI. This chapter gives a glimpse into the history and development of MRI as a diagnostic imaging tool. The fundamentals of the MRI technique, contrast agent design, their current clinical status, and future directions are also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chakravarty, S.: Closomers at a click: a treatise on the design, synthesis and in vivo MRI of novel click closomers as high performance and efficacious contrast agents. University of Missouri, Columbia (2013)
Peregrinus, P.: Epistola Petri Peregrini de Maricourt ad Sygerum de Foucaucourt, Militem, De Magnete. Privately Published, Italy (1269)
Gilbert, W.: De Magnete, Magneticisque, Corporibus, et de Magno Magnete Tellure; Physiologica Nova (On the lodestone, magnetic bodies, and on the great magnet the earth). Dover (Paperback republication, 1991, Translation: Mottelay, P.F.), New York (1600)
Mourino, M.R.: From Thales to Lauterbur, or from the lodestone to MR imaging: magnetism and medicine. Radiology 180, 593–612 (1991). https://doi.org/10.1148/radiology.180.3.1871268https://doi.org/10.1148/radiology.180.3.1871268
Mitchell, A.C.: Chapters in the history of terrestrial magnetism. Terr. Magn. Atmos. Electr. 44, 77–80 (1939). https://doi.org/10.1029/TE044i001p00077https://doi.org/10.1029/TE044i001p00077
Häfeli, U.: The history of magnetism in medicine. In: Magnetism in Medicine, pp. 1–25 (2006)
Macklis, R.M.: Magnetic healing, quackery, and the debate about the health effects of electromagnetic fields. Ann. Int. Med. 118, 376–383 (1993). https://doi.org/10.7326/0003-4819-118-5-199303010-00009https://doi.org/10.7326/0003-4819-118-5-199303010-00009
Lord Butterfield of Stechford: Dr Gilbert’s magnetism. Lancet 338, 1576–1579 (1991). https://doi.org/10.1016/0140-6736(91)92388-I
Shermer, M.: Mesmerized by magnetism. Sci. Am. 287 (2002)
Livingston, J.D.: Driving force: the natural magic of magnets, 1st edn. Harvard University Press, Cambridge (1996)
Asti, G., Solzi, M.: Permanent magnets. In: Gerber, R., Wright, C.D., Asti, G. (eds.) Applied Magnetism, pp. 309–375. Springer, Dordrecht (1994)
Hilai, S.K., Jost Michelsen, W., Driller, J., Leonard, E.: Magnetically guided devices for vascular exploration and treatment. Radiology 113, 529–540 (1974). https://doi.org/10.1148/113.3.529https://doi.org/10.1148/113.3.529
Ram, W., Meyer, H.: Heart catheterization in a neonate by interacting magnetic fields: a new and simple method of catheter guidance. Cathet. Cardiovasc. Diagn 22, 317–319 (1991). https://doi.org/10.1002/ccd.1810220412https://doi.org/10.1002/ccd.1810220412
McNeil, R.G., Ritter, R.C., Wang, B., et al.: Characteristics of an improved magnetic-implant guidance system. IEEE Trans. Biomed. Eng. 42, 802–808 (1995). https://doi.org/10.1109/10.398641https://doi.org/10.1109/10.398641
Poznansky, M.J., Juliano, R.L.: Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol. Rev. 36, 277–336 (1984)
Rand, R.W., Snyder, M., Elliott, D., Snow, H.: Selective radiofrequency heating of ferrosilicone occluded tissue: a preliminary report. Bull. Los Angeles Neurol. Soc. 41, 154–159 (1976)
Sako, M., Hirota, S., Morita, M., et al.: Clinical evaluation of ferromagnetic microembolization in the treatment of hepatoma. Nihon Gan Chiryo Gakkai Shi 20, 1317–1326 (1985)
Chan, D.C.F., Kirpotin, D.B., Bunn, P.A.: Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater. 122, 374–378 (1993). https://doi.org/10.1016/0304-8853(93)91113-L
Jordan, A., Scholz, R., Maier-Hauff, K., et al.: Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001). https://doi.org/10.1016/S0304-8853(00)01239-7
Gneveckow, U., Jordan, A., Scholz, R., et al.: Description and characterization of the novel hyperthermia- and thermoablation-system for clinical magnetic fluid hyperthermia. Med. Phys. 31, 1444–1451 (2004). https://doi.org/10.1118/1.1748629https://doi.org/10.1118/1.1748629
Maier-Hauff, K., Rothe, R., Scholz, R., et al.: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81, 53–60 (2007). https://doi.org/10.1007/s11060-006-9195-0https://doi.org/10.1007/s11060-006-9195-0
Wahsner, J., Gale, E.M., Rodríguez-Rodríguez, A., Caravan, P.: Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev. 119, 957–1057 (2019). https://doi.org/10.1021/acs.chemrev.8b00363https://doi.org/10.1021/acs.chemrev.8b00363
Pysz, M.A., Gambhir, S.S., Willmann, J.K.: Molecular imaging: current status and emerging strategies. Clin. Radiol. 65, 500–516 (2010). https://doi.org/10.1016/j.crad.2010.03.011
Glover, G.H.: Overview of Functional Magnetic Resonance Imaging. Neurosurg. Clin. N. Am. 22, 133–139 (2011). https://doi.org/10.1016/j.nec.2010.11.001
Runge, V.M.: Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMAʼs pharmacovigilance and risk assessment committee recommend. Invest. Radiol. 52, 317–323 (2017). https://doi.org/10.1097/RLI.0000000000000374https://doi.org/10.1097/RLI.0000000000000374
Doan, B.-T., Meme, S., Beloeil, J.-C.: General principles of MRI. Chem. Contrast Agents Med. Magn. Reson. Imaging 1–23 (2013)
Bloch, F., Hansen, W.W., Packard, M.: The nuclear induction experiment. Phys. Rev. 70, 474–485 (1946). https://doi.org/10.1103/PhysRev.70.474https://doi.org/10.1103/PhysRev.70.474
Solomon, I.: Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565 (1955). https://doi.org/10.1103/PhysRev.99.559https://doi.org/10.1103/PhysRev.99.559
Bloembergen, N.: Proton relaxation times in paramagnetic solutions. J. Chem. Phys. 27, 572–573 (1957). https://doi.org/10.1063/1.1743771https://doi.org/10.1063/1.1743771
Lipari, G., Szabo, A.: Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982a). https://doi.org/10.1021/ja00381a009https://doi.org/10.1021/ja00381a009
Lipari, G., Szabo, A.: Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570 (1982b). https://doi.org/10.1021/ja00381a010https://doi.org/10.1021/ja00381a010
Banci, L., Bertini, I., Luchinat, C.: Nuclear and Electron Relaxation. VCH, Weinheim (1991)
Eisinger, J., Shulman, R.G., Blumberg, W.E.: Relaxation enhancement by paramagnetic ion binding in deoxyribonucleic acid solutions. Nature 192, 963–964 (1961). https://doi.org/10.1038/192963a0https://doi.org/10.1038/192963a0
Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973). https://doi.org/10.1038/242190a0https://doi.org/10.1038/242190a0
Mansfield, P., Maudsley, A.A.: Planar spin imaging by NMR. J. Magn. Reson. 27, 101–119 (1977). https://doi.org/10.1016/0022-2364(77)90197-4
Hinshaw, W.S., Bottomley, P.A., Holland, G.N.: Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270, 722–723 (1977). https://doi.org/10.1038/270722a0https://doi.org/10.1038/270722a0
Pykett, I.L., Hinshaw, W.S., Buonanno, F.S., et al.: Physical principles of NMR imaging. Curr. Probl. Cancer 7, 37–50 (1982). https://doi.org/10.1016/S0147-0272(82)80009-3
Lauterbur, P.C.: NMR zeugmatographic imaging in medicine. J. Med. Syst. 6, 591–597 (1982). https://doi.org/10.1007/BF00995509https://doi.org/10.1007/BF00995509
Brady, T.J., Goldman, M.R., Pykett, I.L., et al.: Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effect of paramagnetic proton signal enhancement. Radiology 144, 343–347 (1982). https://doi.org/10.1148/radiology.144.2.6283594https://doi.org/10.1148/radiology.144.2.6283594
Young, I.R., Clarke, G.J., Baffles, D.R., et al.: Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J. Comput. Tomogr. 5, 543–547 (1981). https://doi.org/10.1016/0149-936X(81)90089-8
Carr, D.H., Brown, J., Bydder, G.M., et al.: Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumors. Lancet 323, 484–486 (1984). https://doi.org/10.1016/S0140-6736(84)92852-6
Carr, D.H., Brown, J., Bydder, G.M., et al.: Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. Am. J. Roentgenol. 143, 215–224 (1984). https://doi.org/10.2214/ajr.143.2.215https://doi.org/10.2214/ajr.143.2.215
Clare, S.: Functional MRI: Methods and Applications. University of Nottingham (1997)
Vlaardingerbroek, M.T., den Boer, J.A.: Magnetic Resonance Imaging. Springer, Berlin (2003)
Dale, B.M., Brown, M.A., Semelka, R.C.: Instrumentation. In: Dale, B.M., Brown, M.A., Semelka, R.C. (eds.) MRI Basic Principles and Applications, pp. 177–188 (2015)
Smith, R.C., Lange, R.C.: Understanding Magnetic Resonance Imaging, 1st edn. CRC Press, New York (1997)
Weishaupt, D., Köchli, V.D., Marincek, B.: How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging, 2nd edn. Springer, Berlin (2006)
Geraldes, C.F.G.C., Laurent, S.: Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 4, 1–23 (2009). https://doi.org/10.1002/cmmi.265https://doi.org/10.1002/cmmi.265
Hao, D., Ai, T., Goerner, F., et al.: MRI contrast agents: basic chemistry and safety. J. Magn. Reson. Imaging 36, 1060–1071 (2012). https://doi.org/10.1002/jmri.23725https://doi.org/10.1002/jmri.23725
Tóth, É., Helm, L., Merbach, A.E.: Relaxivity of MRI contrast agents. In: Krause, W. (ed.) Contrast Agents I: Magnetic Resonance Imaging, pp. 61–101. Springer, Berlin (2002)
Muller, R.N., Vander Elst, L., Roch, A., et al.: Relaxation by Metal-Containing Nanosystems, pp. 239–292. Academic Press (2005)
Chan, K.W.-Y., Wong, W.-T.: Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coord. Chem. Rev. 251, 2428–2451 (2007). https://doi.org/10.1016/j.ccr.2007.04.018
Werner, E.J., Datta, A., Jocher, C.J., Raymond, K.N.: High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew. Chem. Int. Ed. 47, 8568–8580 (2008). https://doi.org/10.1002/anie.200800212https://doi.org/10.1002/anie.200800212
Viswanathan, S., Kovacs, Z., Green, K.N., et al.: Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 110, 2960–3018 (2010). https://doi.org/10.1021/cr900284ahttps://doi.org/10.1021/cr900284a
Zhou, Z., Lu, Z.R.: Gadolinium-based contrast agents for magnetic resonance cancer imaging. WIREs Nanomed. Nanobiotechnol. 5, 1–18 (2013). https://doi.org/10.1002/wnan.1198https://doi.org/10.1002/wnan.1198
Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B.: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999). https://doi.org/10.1021/cr980440xhttps://doi.org/10.1021/cr980440x
Koenig, S.H., Brown, R.D., III., Spiller, M., Lundbom, N.: Relaxometry of brain: why white matter appears bright in MRI. Magn. Reson. Med. 14, 482–495 (1990). https://doi.org/10.1002/mrm.1910140306https://doi.org/10.1002/mrm.1910140306
McDonald, R.J., Levine, D., Weinreb, J., et al.: Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 289, 517–534 (2018). https://doi.org/10.1148/radiol.2018181151https://doi.org/10.1148/radiol.2018181151
Hermann, P., Kotek, J., Kubíček, V., Lukeš, I.: Gadolinium(iii) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalt. Trans. 3027–3047 (2008). https://doi.org/10.1039/B719704G
Clough, T.J., Jiang, L., Wong, K.L., Long, N.J.: Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat. Commun. 10, 1420 (2019). https://doi.org/10.1038/s41467-019-09342-3https://doi.org/10.1038/s41467-019-09342-3
De León-Rodríguez, L.M., Martins, A.F., Pinho, M.C., et al.: Basic MR relaxation mechanisms and contrast agent design. J. Magn. Reson. Imaging 42, 545–565 (2015). https://doi.org/10.1002/jmri.24787https://doi.org/10.1002/jmri.24787
Yang, C.T., Chuang, K.H.: Gd(iii) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood–brain barrier permeable. Med. Chem. Commun. 3, 552–565 (2012). https://doi.org/10.1039/C2MD00279Ehttps://doi.org/10.1039/C2MD00279E
Kang, S.I., Ranganathan, R.S., Emswiler, J.E., et al.: Synthesis, characterization, and crystal structure of the gadolinium(III) chelate of (1R,4R,7R)-.alpha., alpha′., alpha″.-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3MA). Inorg. Chem. 32, 2912–2918 (1993). https://doi.org/10.1021/ic00065a019https://doi.org/10.1021/ic00065a019
Chang, C.A., Francesconi, L.C., Malley, M.F., et al.: Synthesis, characterization, and crystal structures of M(DO3A) (M = iron, gadolinium) and Na[M(DOTA)] (M = Fe, yttrium, Gd). Inorg. Chem. 32, 3501–3508 (1993). https://doi.org/10.1021/ic00068a020https://doi.org/10.1021/ic00068a020
Aime, S., Botta, M., Fasano, M., Terreno, E.: Lanthanide(III) chelates for NMR biomedical applications. Chem. Soc. Rev. 27, 19–29 (1998). https://doi.org/10.1039/A827019Zhttps://doi.org/10.1039/A827019Z
Caravan, P.: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35, 512–523 (2006). https://doi.org/10.1039/B510982Phttps://doi.org/10.1039/B510982P
Aime, S., Barge, A., Batsanov, A.S. et al.: Controlling the variation of axial water exchange rates in macrocyclic lanthanide(iii) complexes. Chem. Commun. 1120–1121 (2002). https://doi.org/10.1039/B202862J
Thompson, A.L., Parker, D., Fulton, D.A., et al.: On the role of the counter-ion in defining water structure and dynamics: order, structure and dynamics in hydrophilic and hydrophobic gadolinium salt complexes. Dalt. Trans. 5605–5616 (2006). https://doi.org/10.1039/B606206G
Caravan, P., Farrar, C.T., Frullano, L., Uppal, R.: Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 4, 89–100 (2009). https://doi.org/10.1002/cmmi.267https://doi.org/10.1002/cmmi.267
Ibrahim, M.A., Hazhirkarzar, B., Dublin, A.B.: Magnetic Resonance imaging (MRI) gadolinium. In: StatPearls Publ. Treasure Isl. https://www.ncbi.nlm.nih.gov/books/NBK482487/. Accessed 5 May 2020
Magnevist® (gadopentetate dimeglumine) injection 0.5 mmol/mL. https://www.radiologysolutions.bayer.com/sites/g/files/kmftyc641/files/MVEOSLetter-GPOPDFR8v1.pdf. Accessed 8 July 2020
Gadolinium-Containing Contrast Agents. https://www.ema.europa.eu/en/medicines/human/referrals/gadolinium-containing-contrast-agents. Accessed 8 July 2020
Li, D., Larson, A.C., Speck, O., et al.: Modern applications of MRI in medical sciences. Magn. Med. 343–476 (2006)
Caravan, P.: Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc. Chem. Res. 42, 851–862 (2009). https://doi.org/10.1021/ar800220phttps://doi.org/10.1021/ar800220p
Laurent, S., Vander, E.L., Muller, R.N.: Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol. Imaging 1, 128–137 (2006). https://doi.org/10.1002/cmmi.100https://doi.org/10.1002/cmmi.100
Prince, M.R., Zhang, H., Zou, Z., et al.: Incidence of immediate gadolinium contrast media reactions. Am. J. Roentgenol. 196, W138–W143 (2011). https://doi.org/10.2214/AJR.10.4885https://doi.org/10.2214/AJR.10.4885
Grobner, T.: Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant. 21, 1104–1108 (2006). https://doi.org/10.1093/ndt/gfk062https://doi.org/10.1093/ndt/gfk062
Idée, J.-M., Port, M., Medina, C., et al.: Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology 248, 77–88 (2008). https://doi.org/10.1016/j.tox.2008.03.012
Kanda, T., Fukusato, T., Matsuda, M., et al.: Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276, 228–232 (2015). https://doi.org/10.1148/radiol.2015142690https://doi.org/10.1148/radiol.2015142690
Thomsen, H.S., Morcos, S.K., Almén, T., et al.: Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 23, 307–318 (2013). https://doi.org/10.1007/s00330-012-2597-9https://doi.org/10.1007/s00330-012-2597-9
Brücher, E., Tircsó, G., Baranyai, Z., et al.: Stability and toxicity of contrast agents. In: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, pp. 157–208. John Wiley & Sons Ltd., Chichester (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Chakravarty, S., Shapiro, E.M. (2021). Magnets, Magnetism, and Magnetic Resonance Imaging: History, Basics, Clinical Aspects, and Future Directions. In: Dutta, G., Biswas, A., Chakrabarti, A. (eds) Modern Techniques in Biosensors. Studies in Systems, Decision and Control, vol 327. Springer, Singapore. https://doi.org/10.1007/978-981-15-9612-4_6
Download citation
DOI: https://doi.org/10.1007/978-981-15-9612-4_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-9611-7
Online ISBN: 978-981-15-9612-4
eBook Packages: EngineeringEngineering (R0)