Skip to main content

Carbon Footprint of Karnataka: Accounting of Sources and Sinks

  • Chapter
  • First Online:
Carbon Footprint Case Studies

Abstract

Higher greenhouse gas (GHG) footprint with the burgeoning anthropogenic activities has altered the energy cycle contributing to the changes in the climate with the global warming. Imbalances are evident with the increasing levels of carbon dioxide (CO2) concentrations in the atmosphere. The increased loads of Green House Gas (GHG) emission due to a higher release of carbon content are causing loss of ecosystem services further resulting in climate changes. The forests ecosystems account for ~82% of the continental biomass, a source for higher terrestrial carbon sequestration, playing a vital role in maintaining the carbon cycle and provision of various goods and services, which play a primary role in human’s socioeconomic development. The various initiatives and concerns across the globe are rising to account for the carbon emissions and finding the potential measures for regulation. The carbon dynamics in the Karnataka state has been investigated considering the present status of ecosystems, quantification of sector-wise emissions, and projected likely change in sequestration by modeling land-use changes. Karnataka state now has 15% of the geographical area under forest compared with 21% in 1985. The total above and below ground biomass from forests of Karnataka was 782.1 (Tera Gram) in 1985 and reduced to 519.36 Tg by 2019 due to the largescale land-use changes leading to deforestation and land degradation. The loss of 168 Tg carbon sequestration potential confirms the extent of anthropogenic pressure on the state’s forest. Carbon sequestered is about 16.1 Tg/year, whereas total emission is around 150.65 Tg. The various sources of carbon emissions were accounted for covering livestock, agriculture to industries for the year 2019 as 150.65Tg, which accounts 5% of India’s total emission. Around 11% of the emission has been captured by the forests of Karnataka. The sequestered carbon accounts to INR 34 billion ($0.5 billion) considering INR 2142 ($30) per tonne for carbon trading, which highlights the scope for higher carbon credits with reforestation of degraded landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas SZ, Kousar A, Razzaq S et al. (2018) Energy management in South Asia. Energy Strateg Rev 21:25–34. https://doi.org/10.1016/j.esr.2018.04.004

    Article  Google Scholar 

  2. Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev 15:2252–2261. https://doi.org/10.1016/j.rser.2011.02.014

    Article  CAS  Google Scholar 

  3. Batjes NH, Dijkshoorn JA (1999) Carbon and nitrogen stocks in the soils of the Amazon Region. Geoderma 89:273–286. https://doi.org/10.1016/S0016-7061(98)00086-X

    Article  Google Scholar 

  4. Bharath S, Rajan KS, Ramachandra TV (2013) Land Surface Temperature Responses to Land Use Land Cover Dynamics. Geoinfor Geostat an Overv 1. https://doi.org/10.4172/2327-4581.1000112

  5. Blunden J, Arndt DS (2017) State of the Climate in 2016. Bull Am Meteorol Soc 98:Si-S280. https://doi.org/https://doi.org/10.1175/2017BAMSStateoftheClimate.1

  6. Chhabra A, Palria S, Dadhwal VK (2003) Soil organic carbon pool in Indian forests. for Ecol Manage 173:187–199. https://doi.org/10.1016/S0378-1127(02)00016-6

    Article  Google Scholar 

  7. Dadhwal VK, Singh S, Patil P (2009) Assessment of phytomass carbon pools in forest ecosystems in India. NNRMS Bull 41–57

    Google Scholar 

  8. Devagiri GM, Money S, Singh S et al (2013) Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka, India using spectral modeling. Trop Ecol 54:149–165

    Google Scholar 

  9. Dixit AK, Birthal PS (2016) Greenhouse gases emission from livestock production system of India: An actual consumption approach. Indian J Anim Sci 86:1331–1336

    CAS  Google Scholar 

  10. Van Do T, Trung PD, Yamamoto M et al (2018) Aboveground biomass increment and stand dynamics in tropical evergreen broadleaved forest. J Sustain for 37:1–14. https://doi.org/10.1080/10549811.2017.1375959

    Article  Google Scholar 

  11. Eggleston S, Buendia L, Miwa K et al (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies Hayama, Japan

    Google Scholar 

  12. EMPRI (2012) Karnataka State Action Plan On Climate Change, 1st Assessment. TERI, NewDelhi, Bengaluru

    Google Scholar 

  13. Gallardo M, Gómez I, Vilar L et al (2016) Impacts of future land use/land cover on wildfire occurrence in the Madrid region (Spain). Reg Environ Chang 16:1047–1061. https://doi.org/10.1007/s10113-015-0819-9

    Article  Google Scholar 

  14. Ghazoul J, Butler RA, Mateo-Vega J, Koh LP (2010) REDD: a reckoning of environment and development implications. Trends Ecol Evol 25:396–402. https://doi.org/10.1016/j.tree.2010.03.005

    Article  Google Scholar 

  15. Ghose MK, Paul R, Banerjee SK (2004) Assessment of the impacts of vehicular emissions on urban air quality and its management in Indian context: The case of Kolkata (Calcutta). Environ Sci Policy 7:345–351. https://doi.org/10.1016/j.envsci.2004.05.004

    Article  CAS  Google Scholar 

  16. Gupta D, Singh SK (2012) Greenhouse Gas Emissions from Wastewater Treatment Plants. J Water Sustain 2:131–139

    CAS  Google Scholar 

  17. Gupta PK, Sahai A, Singh N et al (2004) Residue burning in rice-wheat cropping system: causes and implications. Curr Sci 87:1713–1717

    CAS  Google Scholar 

  18. Guthrie G, Kumareswaran D (2009) Carbon Subsidies, Taxes and Optimal Forest Management. Environ Resour Econ 43:275–293. https://doi.org/10.1007/s10640-008-9238-4

    Article  Google Scholar 

  19. Houghton RA, Hackler JL (1999) Emissions of carbon from forestry and land-use change in tropical Asia. Glob Chang Biol 5:481–492. https://doi.org/10.1046/j.1365-2486.1999.00244.x

    Article  Google Scholar 

  20. Indu M, Gupta M, Tomar S et al (2013) Carbon Sequestration Potential of Agroforestry Systems in India. J Earth Sci Clim Change 04:1–7. https://doi.org/10.4172/2157-7617.1000131

    Article  CAS  Google Scholar 

  21. Jose VS, Sejian V, Bagath M et al (2016) Modeling of Greenhouse Gas Emission from Livestock. Front Environ Sci 4:1–10. https://doi.org/10.3389/fenvs.2016.00027

    Article  Google Scholar 

  22. Kaul M, Mohren GMJ, Dadhwal VK (2010) Carbon storage and sequestration potential of selected tree species in India. Mitig Adapt Strateg Glob Chang 15:489–510. https://doi.org/10.1007/s11027-010-9230-5

    Article  Google Scholar 

  23. Köhl M, Frühwald A (2009) Permanent Wood Sequestration: No Solution to the Global Carbon Dioxide Problem. Chemsuschem 2:609–613. https://doi.org/10.1002/cssc.200800240

    Article  CAS  Google Scholar 

  24. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science (80- ) 304:1623–1627. https://doi.org/https://doi.org/10.1126/science.1097396

  25. Lal R (1999) Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog Environ Sci 1:307–326

    CAS  Google Scholar 

  26. Le Quéré C, Andrew RM, Friedlingstein P et al (2018) Global Carbon Budget 2018. Earth Syst Sci Data 10:2141–2194. https://doi.org/10.5194/essd-10-2141-2018

    Article  Google Scholar 

  27. Leach M, Scoones I (2013) Carbon forestry in West Africa: The politics of models, measures and verification processes. Glob Environ Chang 23:957–967. https://doi.org/10.1016/j.gloenvcha.2013.07.008

    Article  Google Scholar 

  28. Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. John Wiley & Sons

    Google Scholar 

  29. Liu X, Bae J (2018) Urbanization and industrialization impact of CO2 emissions in China. J Clean Prod 172:178–186. https://doi.org/10.1016/j.jclepro.2017.10.156

    Article  Google Scholar 

  30. Mundaca G (2017) How much can CO2 emissions be reduced if fossil fuel subsidies are removed? Energy Econ 64:91–104. https://doi.org/10.1016/j.eneco.2017.03.014

    Article  Google Scholar 

  31. Nair PKR, Nair VD, Kumar BM, Haile SG (2009) Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ Sci Policy 12:1099–1111. https://doi.org/10.1016/j.envsci.2009.01.010

    Article  CAS  Google Scholar 

  32. Ni Y, Eskeland GS, Giske J, Hansen JP (2016) The global potential for carbon capture and storage from forestry. Carbon Balance Manag 11. https://doi.org/10.1186/s13021-016-0044-y

  33. Pachauri RK, Reisinger A (2007) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  34. Pan Y, Birdsey RA, Fang J, et al (2011) A large and persistent carbon sink in the world’s forests. Science (80- ) 333:988–93. https://doi.org/https://doi.org/10.1126/science.1201609

  35. Pandey R, Rawat GS, Kishwan J (2011) Changes in Distribution of Carbon in Various Forest Types of India from 1995–2005 Changements dans la Distribution du Carbone dans Différents Types de Forêts en Inde. Silva Lusit 19:41–54

    Google Scholar 

  36. Pongratz J, Reick CH, Houghton RA, House JI (2014) Terminology as a key uncertainty in net land use and land cover change carbon flux estimates. Earth Syst Dyn 5:177–195. https://doi.org/10.5194/esd-5-177-2014

    Article  Google Scholar 

  37. Rai SN, Proctor J (1986) Ecological Studies on Four Rainforests in Karnataka, India. J Ecol 74:439–454

    Article  Google Scholar 

  38. Rajan K, Natarajan A, Anil Kumar KS et al (2010) Soil organic carbon - the most reliable indicator for monitoring land degradation by soil erosion. Curr Sci 99:823–827

    CAS  Google Scholar 

  39. Ramachandra TV, Aithal BH, Sreejith K (2015) GHG footprint of major cities in India. Renew Sustain Energy Rev 44:473–495. https://doi.org/10.1016/j.rser.2014.12.036

    Article  Google Scholar 

  40. Ramachandra TV, Bharath S (2019a) Global Warming Mitigation Through Carbon Sequestrations in the Central Western Ghats. Remote Sens Earth Syst Sci 2:39–63. https://doi.org/10.1007/s41976-019-0010-z

    Article  Google Scholar 

  41. Ramachandra TV, Bharath S, Gupta N (2018a) Modelling landscape dynamics with LST in protected areas of Western Ghats, Karnataka. J. Environ. Manage. 1253–1262

    Google Scholar 

  42. Ramachandra TV, Bharath S, Vinay S (2019) Visualisation of impacts due to the proposed developmental projects in the ecologically fragile regions- Kodagu district. Karnataka. Prog Disaster Sci 3:100038. https://doi.org/10.1016/j.pdisas.2019.100038

    Article  Google Scholar 

  43. Ramachandra TV, Hegde G, Bharath S, Krishnadas G (2014) Bioenergy: A sustainable energy option for rural india. Adv for Lett 3:1–15

    Google Scholar 

  44. Ramachandra TV, Shwetmala, (2009) Emissions from India’s transport sector: Statewise synthesis. Atmos Environ 43:5510–5517. https://doi.org/10.1016/j.atmosenv.2009.07.015

    Article  CAS  Google Scholar 

  45. Ramachandra TV, Aithal BH, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renew Sustain Energy Rev 82:1122–1136. https://doi.org/10.1016/j.rser.2017.09.085

    Article  Google Scholar 

  46. Ramachandra TV, Bharath S (2019b) Carbon Sequestration Potential of the Forest Ecosystems in the Western Ghats, a Global Biodiversity Hotspot. Nat Resour Res 29:2753–2771. https://doi.org/10.1007/s11053-019-09588-0

    Article  CAS  Google Scholar 

  47. Ramachandra TV, Joshi NV, Subramanian DK (2000) Present and prospective role of bioenergy in regional energy system. Renew Sustain Energy Rev 4:375–430. https://doi.org/10.1016/S1364-0321(00)00002-2

    Article  CAS  Google Scholar 

  48. Ramachandra TV, Subramanian DK, Joshi NV et al (2000) Domestic energy consumption patterns in Uttara Kannada District, Karnataka State, India. Energy Convers Manag 41:775–831. https://doi.org/10.1016/S0196-8904(99)00151-X

    Article  Google Scholar 

  49. Ramachandra TV, Bharath S (2018) Geoinformatics based Valuation of Forest Landscape Dynamics in Central Western Ghats, India. J Remote Sens GIS 07:1–8. https://doi.org/10.4172/2469-4134.1000227

    Article  Google Scholar 

  50. Ramachandra TV, Chandran MDS, Harish BR, et al (2010) Biodiversity, Ecology and Socio Economic Aspects of Gundia River Basin in the Context of Proposed Mega Hydro Electric Power Project, CES Technical Report 122. Bengaluru

    Google Scholar 

  51. Ramachandra TV, Shwetmala (2012) Decentralised carbon footprint analysis for opting climate change mitigation strategies in India. https://doi.org/https://doi.org/10.1016/j.rser.2012.05.035

  52. Randerson JT, van der Werf GR, Collatz GJ et al (2005) Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2. Global Biogeochem Cycles 19:1–13. https://doi.org/10.1029/2004GB002366

    Article  CAS  Google Scholar 

  53. Rao G, Krishnakumar G, Sumesh Dudani N et al (2013) Vegetation Changes along Altitudinal Gradients in Human Disturbed Forests of Uttara Kannada, Central Western Ghats. J Biodivers 4:61–68

    Article  Google Scholar 

  54. Ravindranath NH, Ostwald M (2008) Carbon inventory methods: a handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects. Advances in Global Change Research. Carbon Invent methods a Handb Greenh gas Invent carbon Mitig roundwood Prod Proj Adv Glob Chang Res 237–270. https://doi.org/https://doi.org/10.1007/978-1-4020-6547-7_10

  55. Ravindranath NH, Somashekhar BS, Gadgil M (1997) Carbon flow in Indian forests. Clim Change 35:297–320. https://doi.org/10.1023/A:1005303405404

    Article  CAS  Google Scholar 

  56. Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:81–91. https://doi.org/10.4155/cmt.13.77

    Article  CAS  Google Scholar 

  57. Sheikh MA, Kumar M, Bussman RW, Todaria NP (2011) Forest carbon stocks and fluxes in physiographic zones of India. Carbon Balance Manag 6:15. https://doi.org/10.1186/1750-0680-6-15

    Article  CAS  Google Scholar 

  58. Singh A, Gangopadhyay S, Nanda PK et al (2008) Trends of greenhouse gas emissions from the road transport sector in India. Sci Total Environ 390:124–131. https://doi.org/10.1016/j.scitotenv.2007.09.027

    Article  CAS  Google Scholar 

  59. Singh P, Kansal A (2018) Energy and GHG accounting for wastewater infrastructure. Resour Conserv Recycl 128:499–507. https://doi.org/10.1016/j.resconrec.2016.07.014

    Article  Google Scholar 

  60. Singhal KK, Mohini M, Jha AK, Gupta PK (2005) Methane emission estimates from enteric fermentation in Indian livestock: Dry matter intake approach. Curr Sci 88:119–127

    CAS  Google Scholar 

  61. Sun J, Peng H, Chen J et al (2016) An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J Clean Prod 112:2625–2631. https://doi.org/10.1016/j.jclepro.2015.09.112

    Article  CAS  Google Scholar 

  62. Swamy HR (1992) Organic productivity, nutrient cycling and small watershed hydrology of natural forests and monoculture plantations in Chikmagalur District. Karnataka, John Wiley and Sons Inc, New York, NY (United States)

    Google Scholar 

  63. Yu S, Wei YM, Guo H, Ding L (2014) Carbon emission coefficient measurement of the coal-to-power energy chain in China. Appl Energy 114:290–300. https://doi.org/10.1016/j.apenergy.2013.09.062

    Article  CAS  Google Scholar 

  64. Zhang B, Tian H, Ren W et al (2016) Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls. Global Biogeochem Cycles 30:1246–1263. https://doi.org/10.1002/2016GB005381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the European Union for funding the NCAVES Project and the UNSD and UN Environment for leading the NCAVES Project globally and supporting its management and implementation in Karnataka, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Ramachandra .

Editor information

Editors and Affiliations

Appendices

Annexure-I

The major industries of Karnataka (Figure A) and their installed capacity have been shown in Table A and their respective emissions.

Fig. A
figure 27

Source Author

Major industries of Karnataka.

Table A Industries considered and their emissions

Annexure-II

The energy produced by various power stations (Figure B) and their capacity are shown in Table B with emissions.

Table B Thermal and Diesel power stations and their installed capacity
Fig. B
figure 28

Source Author

Thermal and Diesel power stations of Karnataka.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramachandra, T.V., Bharath, S. (2021). Carbon Footprint of Karnataka: Accounting of Sources and Sinks. In: Muthu, S.S. (eds) Carbon Footprint Case Studies. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-9577-6_3

Download citation

Publish with us

Policies and ethics