Skip to main content

Graphene-Reinforced Geopolymer Matrix Composites

  • Chapter
  • First Online:
Geopolymer and Geopolymer Matrix Composites

Abstract

This chapter focuses on the preparation of partially reduced rGO/geopolymer matrix composites by in situ synthesis using metakaolin, alkaline solution and GO as raw materials. The effects of reduction temperature and time of alkaline reduction on the characteristics and microstructure before and after GO reduction are systematically studied by using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) analysis, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and so on. The reduction transformation mechanism of GO under the alkaline solution is also discussed. The synthesis of in situ reduced rGO/geopolymer provides a new and green way to prepare the composite, which may be attractive for applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X.B. Fan, W.C. Peng, Y. Li et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation[J]. Adv. Mater. 20, 4490–4493 (2008)

    Article  CAS  Google Scholar 

  2. J.P. Rourke, P.A. Pandey, J.J. Moore et al., The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets[J]. Angew. Chem. 123(14), 3231–3235 (2011)

    Article  Google Scholar 

  3. S. Yan, Geopolymerization and Ceramic Formation Mechanism of the Graphene Oxide Reinforced Geopolymer[D] (Harbin Institute of Technology, Harbin, China, 2016) (in Chinese)

    Google Scholar 

  4. S. Yan, P. He, D. Jia et al., In situ fabrication and characterization of graphene/geopolymer composites[J]. Ceram. Int. 41, 11242–11250 (2015)

    Article  CAS  Google Scholar 

  5. S. Pei, H.M. Cheng, The reduction of graphene oxide[J]. Carbon 50(9), 3210–3228 (2012)

    Article  CAS  Google Scholar 

  6. S. Yan, P. He, D. Jia et al., Effect of reduced graphene oxide content on the microstructure and mechanical properties of graphene–geopolymer nanocomposites[J]. Ceram. Int. 42(1), 752–758 (2016)

    Article  CAS  Google Scholar 

  7. S. Yan, P. He, D. Jia et al., Effects of treatment temperature on the reduction of GO under alkaline solution during the preparation of graphene/geopolymer composites[J]. Ceram. Int. 42, 18181–18188 (2016)

    Article  CAS  Google Scholar 

  8. M.J. Fernandez-Merino, L. Guardia, J.I. Paredes et al., Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. J. Phy. Chem. C 114(14), 6426–6432 (2010)

    Article  CAS  Google Scholar 

  9. X. Zhou, J. Zhang, H. Wu et al., Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene[J]. J. Phys. Chem. C 115(24), 11957–11961 (2011)

    Article  CAS  Google Scholar 

  10. X. Zhang, K. Li, H. Li et al., Graphene nanosheets synthesis via chemical reduction of graphene oxide using sodium acetate trihydrate solution[J]. Synth. Met. 193, 132–138 (2014)

    Article  CAS  Google Scholar 

  11. J.N. Tiwari, K. Mahesh, N.H. Le et al., Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions[J]. Carbon 56, 173–182 (2013)

    Article  CAS  Google Scholar 

  12. D. Luo, G. Zhang, J. Liu et al., Evaluation criteria for reduced graphene oxide[J]. J. Phy. Chem. C 115(23), 11327–11335 (2011)

    Article  CAS  Google Scholar 

  13. G. Wang, J. Yang, J. Park et al., Facile synthesis and characterization of graphene nanosheets[J]. J. Phy. Chem. C 112(22), 8192–8195 (2008)

    Article  CAS  Google Scholar 

  14. S.D. Perera, R.G. Mariano, N. Nijem et al., Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene[J]. J. Power Sources 215, 1–10 (2012)

    Article  CAS  Google Scholar 

  15. H. Porwal, S. Grasso, M.K. Mani et al., In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite[J]. J. Eur. Ceram. Soc. 34(14), 3357–3364 (2014)

    Article  CAS  Google Scholar 

  16. W. Chen, L. Yan, Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure[J]. Nanoscale 2(4), 559–563 (2010)

    Article  CAS  Google Scholar 

  17. J. Davidovits 30 Years of Successes and Failures in Geopolymer Applications.Market Trends and Potential Breakthroughs[C]. Geopolymer Conference, 2002, 10(28–29): 1–16.

    Google Scholar 

  18. H. Porwal, P. Tatarko, S. Grasso et al., Graphene reinforced alumina nano-composites[J]. Carbon 64, 359–369 (2013)

    Article  CAS  Google Scholar 

  19. S. Yan, P. He, D. Jia et al., Effects of graphene oxide on the geopolymerization mechanism determined by quenching the reaction at intermediate states[J]. RSC Adv. 7, 13498–13508 (2017)

    Article  CAS  Google Scholar 

  20. M.L. Granizo, M.T. Blanco-Varela, A. Palomo, Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry[J]. J. Mater. Sci. 35, 6309–6315 (2000)

    Google Scholar 

  21. H.L. Wang, H.H. Li, F.Y. Yan, Synthesis and mechanical properties of metakaolinite-based geopolymer[J]. Colloids Surf. A 268, 1–6 (2005)

    Article  CAS  Google Scholar 

  22. P. Rovnaník, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymers[J]. Constr. Build. Mater. 24, 1176–1183 (2010)

    Article  Google Scholar 

  23. G.M. Nasab, F. Golestanifard, K.J.D. MacKenzie, The effect of the SiO2/Na2O ratio in the structural modification of Metakaolin-based geopolymers studied by XRD, FTIR and MAS-NMR[J]. J. Ceram. Sci. Technol. 5, 184–192 (2014)

    Google Scholar 

  24. F.G.M. Aredes, T.M.B. Campos, J.P.B. Machado et al., Effect of cure temperature on the formation of metakaolinite-based geopolymer[J]. Ceram. Int. 41(6), 7302–7311 (2015)

    Article  CAS  Google Scholar 

  25. M.R. Wang, Geopolymerization Mechanism of Aluminosilicate Geopolymer and Microstructure and Properties of Fly Ash Cenosphere/Geopolymer Composite[D]Harbin Institute of Technology (Harbin, China, 2011) (in Chinese)

    Google Scholar 

  26. Y.M. Nie, Mineral polymer in the system of SiO2-Al2O3-Na2O(K2O)-H2O: preparation and reaction mechanism[D] (China University of Geosciences(Beijing), Beijing, China, 2006), pp. 41–48. (in Chinese)

    Google Scholar 

  27. G.J. Zheng, Preparation of Amorphous Al2O3-2SiO2 Powders and Study on Mechanism of Geopolymerization[D] Powders and Study on Mechanism of Geopolymerization[D] (Guangxi University, Guangxi, China, 2011) (in Chinese)

    Google Scholar 

  28. X. Huang, X. Qi, F. Boey et al., Graphene-based composites[J]. Chem. Soc. Rev. 41(2), 666–686 (2012)

    Article  CAS  Google Scholar 

  29. B. Chen, X. Liu, X. Zhao et al., Preparation and properties of reduced graphene oxide/fused silica composites[J]. Carbon 77, 66–75 (2014)

    Article  CAS  Google Scholar 

  30. P. He, D. Jia, S. Wang, Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor[J]. J. Eur. Ceram. Soc. 33(4), 689–698 (2013)

    Article  CAS  Google Scholar 

  31. L.S. Walker, V.R. Marotto, M.A. Rafiee et al., Toughening in graphene ceramic composites[J]. ACS Nano 5(4), 3182–3190 (2011)

    Article  CAS  Google Scholar 

  32. T. He, Study on Synthesis Process of Graphene and Epoxy Resin Composite Material[D]Nanchang Hangkong University (Nanchang, China, 2012) (in Chinese)

    Google Scholar 

  33. M. Michálek, M. Kašiarová, M. Michálková et al., Mechanical and functional properties of Al2O3-ZrO2-MWCNTs nanocomposites[J]. J. Eur. Ceram. Soc. 34(14), 3329–3337 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechang Jia .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, D., He, P., Wang, M., Yan, S. (2020). Graphene-Reinforced Geopolymer Matrix Composites. In: Geopolymer and Geopolymer Matrix Composites. Springer Series in Materials Science, vol 311. Springer, Singapore. https://doi.org/10.1007/978-981-15-9536-3_4

Download citation

Publish with us

Policies and ethics