Skip to main content

Analyzing Tantalum Carbide (TaC) and Hafnium Carbide (HfC) for Spacecraft Material

  • Conference paper
  • First Online:
Recent Trends in Manufacturing and Materials Towards Industry 4.0

Abstract

Spacecraft needs thermal protection systems material that rise more than ±1.260 °C on nose cap and wing leading edge. It depends on the heat loading encountered during the re-entry of the orbiter into the atmosphere. Recently, the spacecraft uses thermal protection system (TPS) materials like reinforced carbon-carbon (RCC), High-Temperature Reusable Surface Insulation (HRSI), Low-Temperature Reusable Surface Insulation (LRSI), and Felt Reusable Surface Insulation (FRSI). The TPS is an isolator material which have range temperature −121 °C until 1.649 °C. This paper analyzes Tantalum Carbide (TaC) and Hafnium Carbide (HfC) for spacecraft material. We show that Tantalum Carbide (TaC) and Hafnium Carbide (HfC) would rise above the TPS materials temperature. The comparison among RCC, HRSI, LRSI, FRSI, and TaC-HfC is on the heat resistant temperature. The TaC and HfC is heat resistant material that rise 3726.85 °C. The TaC-HfC is recommended for spacecraft using, especially on nose cap and lower surface. Nose cap and lower surface are area of spacecraft body which would experience extremely high temperatures when aircraft fly to left and entry the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtis HD (2020) Spacecraft attitude dynamics. In: Orbital mechanics for engineering students. https://doi.org/10.1016/b978-0-08-102133-0.00012-x

  2. Smith CJ, Ross MA, De Leon N, Weinberger CR, Thompson GB (2018) Ultra-high temperature deformation in TaC and HfC. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2018.07.017

    Article  Google Scholar 

  3. Cedillos-Barraza O, Grasso S, Al Nasiri N, Jayaseelan DD, Reece MJ, Lee WE (2016) Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC-HfC fabricated by spark plasma sintering. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2016.02.009

  4. Pienti L, Silvestroni L, Landi E, Melandri C, Sciti D (2015) Microstructure, mechanical properties and oxidation behavior of TaC- and HfC-based materials containing short SiC fiber. Ceram Int. https://doi.org/10.1016/j.ceramint.2014.09.070

    Article  Google Scholar 

  5. Zhang C, Boesl B, Agarwal A (2017) Oxidation resistance of tantalum carbide-hafnium carbide solid solutions under the extreme conditions of a plasma jet. Ceram Int. https://doi.org/10.1016/j.ceramint.2017.07.227

    Article  Google Scholar 

  6. Yu XX, Weinberger CR, Thompson GB (2014) Ab initio investigations of the phase stability in tantalum carbides. Acta Mater. https://doi.org/10.1016/j.actamat.2014.07.070

    Article  Google Scholar 

  7. Zhou S, Zhou G, Jiang S, Fan P, Hou H (2017) Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Mater Lett. https://doi.org/10.1016/j.matlet.2017.04.115

    Article  Google Scholar 

  8. Cedillos-Barraza O, Manara D, Boboridis K, Watkins T, Grasso S, Jayaseelan DD, Konings RJM, Reece MJ, Lee WE (2016) Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system. Sci Rep. https://doi.org/10.1038/srep37962

    Article  Google Scholar 

  9. Jiang J, Wang S, Li W, Chen Z (2016) Low-temperature synthesis of tantalum carbide by facile one-pot reaction. Ceram Int. https://doi.org/10.1016/j.ceramint.2016.01.100

    Article  Google Scholar 

  10. Rezaei F, Kakroudi MG, Shahedifar V, Vafa NP, Golrokhsari M (2017) Densification, microstructure and mechanical properties of hot pressed tantalum carbide. Ceram Int. https://doi.org/10.1016/j.ceramint.2016.10.067

    Article  Google Scholar 

  11. Zhang C, Loganathan A, Boesl B, Agarwal A (2017) Thermal analysis of tantalum carbide-hafnium carbide solid solutions from room temperature to 1400 °C. Coatings. https://doi.org/10.3390/coatings7080111

    Article  Google Scholar 

  12. Yang Y, Li K, Zhao Z, Li H (2016) Ablation resistance of HfC-SiC coating prepared by supersonic atmospheric plasma spraying for SiC-coated C/C composites. Ceram Int. https://doi.org/10.1016/j.ceramint.2015.11.161

    Article  Google Scholar 

  13. Feng G, Li H, Yang L, Li B, Xu J, Yao X (2020) Investigation on the ablation performance and mechanism of HfC coating modified with TaC. Corros Sci. https://doi.org/10.1016/j.corsci.2020.108649

    Article  Google Scholar 

  14. Peng J, Dong H, Hojamberdiev M, Yi D, Yang Y, Bao H, Li H, Li H, Mao D, Meng L (2017) Improving the mechanical properties of tantalum carbide particle-reinforced iron-based composite by varying the TaC contents. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2017.08.050

    Article  Google Scholar 

  15. Bai H, Zhong L, Shang Z, Xu Y, Wu H, Bai J, Cao B, Wei J (2018) Microstructure and impact properties of Ta-TaC core–shell rod-reinforced iron-based composite fabricated by in situ solid-phase diffusion. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.07.267

    Article  Google Scholar 

  16. Nisar A, Balani K (2017) Role of interfaces on multi-length scale wear mechanics of TaC-based composites. Adv Eng Mater. https://doi.org/10.1002/adem.201600713

    Article  Google Scholar 

  17. Style RW, Jagota A, Hui C-Y, Dufresne ER (2017) Elastocapillarity: surface tension and the mechanics of soft solids. Annu Rev Condens Matter Phys. https://doi.org/10.1146/annurev-conmatphys-031016-025326

    Article  Google Scholar 

  18. Ren J, Feng E, Zhang Y, Zhang J, Li L (2020) Microstructure and anti-ablation performance of HfC-TaC and HfC-ZrC coatings synthesized by CVD on C/C composites. Ceram Int 46:10147–10158. https://doi.org/10.1016/j.ceramint.2020.01.006

    Article  Google Scholar 

  19. Kolel-Veetil M, Walker C, Prestigiacomo J, Dyatkin B, Qadri S, Goswami R, Fears K, Laskoski M, Osofsky M, Keller T (2017) Superconducting TaC nanoparticle-containing ceramic nanocomposites thermally transformed from mixed Ta and aromatic molecule precursors. J Mater Res. https://doi.org/10.1557/jmr.2017.257

    Article  Google Scholar 

  20. Hu J, Li H, Li J, Huang J, Kong J, Zhu H, Xiong D (2020) Structure, mechanical and tribological properties of TaCx composite films with different graphite powers. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.153769

    Article  Google Scholar 

  21. Gao TY, Liang JH, Sun MB, Zhong Z (2016) Investigation of asymmetric and unsteady combustion in a supersonic combustor with single-side expansion. Tuijin Jishu/J Propuls Technol https://doi.org/10.13675/j.cnki.tjjs.2016.03.003

  22. Dunn BD, Dunn BD (2016) Requirements for spacecraft materials. Mater Process. https://doi.org/10.1007/978-3-319-23362-8_2

  23. Cherniaev A, Telichev I (2017) Weight-efficiency of conventional shielding systems in protecting unmanned spacecraft from orbital debris. J Spacecr Rockets. https://doi.org/10.2514/1.A33596

    Article  Google Scholar 

  24. Pienti L, Sciti D, Silvestroni L, Cecere A, Savino R (2015) Ablation tests on HfC- and TaC-based ceramics for aeropropulsive applications. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2014.11.018

    Article  Google Scholar 

  25. Cheng J, Wang J, Wang X, Wang H (2017) Preparation and high-temperature performance of HfC-based nanocomposites derived from precursor with Hf-(O, N) bonds. Ceram Int. https://doi.org/10.1016/j.ceramint.2017.02.152

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Indonesia Defense University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sovian Aritonang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aritonang, S., Ezha Kurniasari, W.S., Juhana, R., Herawan, T. (2021). Analyzing Tantalum Carbide (TaC) and Hafnium Carbide (HfC) for Spacecraft Material. In: Osman Zahid, M.N., Abdul Sani, A.S., Mohamad Yasin, M.R., Ismail, Z., Che Lah, N.A., Mohd Turan, F. (eds) Recent Trends in Manufacturing and Materials Towards Industry 4.0. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9505-9_81

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9505-9_81

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9504-2

  • Online ISBN: 978-981-15-9505-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics