Skip to main content

From Small Molecules to Complex Systems: A Survey of Chemical and Biological Applications of the Mössbauer Effect

  • Chapter
  • First Online:
Modern Mössbauer Spectroscopy

Part of the book series: Topics in Applied Physics ((TAP,volume 137))

Abstract

Mössbauer spectroscopy and synchrotron based nuclear resonance scattering are ideal tools to investigate electronic and dynamic properties of iron centers in chemical and biological systems. These methods have reached a level of sophistication during the last decades so that it is now possible to hunt for particular functional active iron sites even in very complex systems like iron based heterogeneous catalysts or even in some cases in biological cells. This book chapter will try to give a comprehensive overview of what can be achieved by using experimental techniques using the Mössbauer effect when combining different evaluation strategies like e.g. relatively straight forward analysis using lorentzian lines or hyperfine field distributions and more sophisticated investigations of paramagnetic iron sites by means of the spin Hamiltonian formalism. In addition the possibilities of synchrotron techniques based on the Mössbauer effect like nuclear forward and nuclear inelastic scattering will be shown. Special emphasis lies also on the sample requirements and on theoretical methods like quantum chemical density functional theory which nowadays is also available coupled with molecular mechanic shells which enables the treatment of very large systems like iron proteins. In addition to laboratory-based Mössbauer spectroscopy recent progress using synchrotron based nuclear inelastic scattering (NIS) to detect iron based vibrational modes in iron proteins and chemical systems will be described. In combination with quantum mechanical calculations for example, the iron ligand modes of NO transporter proteins have been explored. Via NIS it has been possible to detect iron ligand modes in powders and single crystals, but also in thin solid films of iron(II) based spin crossover (SCO) compounds. In addition, nuclear forward scattering (NFS) has been applied to monitor the spin switch between the S = 0 and S = 2 state of SCO microstructures. Furthermore, recent work on polynuclear iron(II) SCO compounds, iron based catalysts as well as biological cells will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Hauska, M. Schütz, M. Büttner, in Oxygenic Photosynthesis: The Light Reactions. ed. by D.R. Ort, C.F. Yocum (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), pp. 377–398

    Google Scholar 

  2. D.F.V. Lewis, Cytochromes P450—Structure, Function and Mechanism (Taylor & Francis Ltd., London, 1996)

    Google Scholar 

  3. A. Trautwein, Struct. Bond. 20, 101–167 (1975)

    Article  Google Scholar 

  4. P.G. Debrunner, in Iron Porphyrins. ed. by A.B.P. Lever, H.B. Gray (Part III. VCH Publishing, Heidelberg, 1989), pp. 139–234

    Google Scholar 

  5. E.I. Solomon, T.C. Brunold, M.I. Davis, J.N. Kemsley, S.K. Lee, N. Lehnert, F. Neese, A.J. Skulan, Y.S. Yang, J. Zhou, Chem. Rev. 100, 235–349 (2000)

    Article  Google Scholar 

  6. A.C. Rosenzweig, C.A. Frederick, S.J. Lippard, P. Nordlund, Nature 366, 537–543 (1993)

    Article  ADS  Google Scholar 

  7. B.M. Sjöberg, Struct. Bond. 88, 139–173 (1997)

    Article  Google Scholar 

  8. R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. 96, 2239–2314 (1996)

    Article  Google Scholar 

  9. P.M. Harrison, T.H. Lilley, in T.M. Loehr (ed.), Physical bioinorganic chemistry 5, in Iron Carriers and Iron Proteins (VCH-Publishers, New York, 1989), pp. 123–238

    Google Scholar 

  10. B.F. Matzanke, in Transition Metals in Microbial Metabolism. ed. by G. Winkelmann, C.J. Carrano (Harwood Academic Publishers, New York, 1997), pp. 117–157

    Google Scholar 

  11. A.S. Reinhardt, Mössbauer-Spektroskopie und Dichte-funktional-Theorie-Untersuchungen an Modellkomplexen der [Fe]-Hydrogenase und dem Protein LytB, Dissertation TU Kaiserslautern, zugleich Shaker Verlag GmbH Aachen, (2012)

    Google Scholar 

  12. H.L. Schläfer, G. Gliemann, Einführung in Die Ligandenfeldtheorie (Akademische Verlagsgesellschaft, Frankfurt Am Main, 1980)

    Google Scholar 

  13. V. Schünemann, A.X. Trautwein, J. Illerhaus, W. Haehnel, Biochemistry 38, 8981–8991 (1999)

    Article  Google Scholar 

  14. V. Schünemann, A.M. Raitsimring, R. Benda, A.X. Trautwein, T.K. Shokireva, F.A. Walker, JBIC 4, 708–716 (1999)

    Article  Google Scholar 

  15. G. Simmoneaux, V. Schünemann, C. Morice, L. Carel, L. Toupet, H. Winkler, A.X. Trautwein, F.A. Walker, J. Am. Chem. Soc. 122, 4366–4377 (2000)

    Article  Google Scholar 

  16. H. Keutel, I. Käpplinger, E.G. Jäger, M. Grodzicki, V. Schünemann, A.X. Trautwein, Inorg. Chem. 38, 2320–2327 (1999)

    Article  Google Scholar 

  17. V. Schünemann, M. Gerdan, A.X. Trautwein, N. Haoudi, D. Mandon, J. Fischer, R. Weiss, A. Tabard, R. Guillard, Angew. Chem. Int. Ed. 38, 3181–3183 (1999)

    Article  Google Scholar 

  18. C. Schulz, P.W. Devaney, H. Winker, P.G. Debrunner, N. Doan, R. Chiang, R. Rutter, L.P. Hager, FEBS Lett. 103, 102–105 (1979)

    Google Scholar 

  19. C. Schulz, R. Rutter, J.T. Sage, P.G. Debrunner, L.P. Hager, Biochemistry 23, 4743–4754 (1984)

    Article  Google Scholar 

  20. W. Kaim, B. Schwederski, Bioanorganische Chemie (Teubner Taschenbücher Chemie, Stuttgart, 1995)

    Book  Google Scholar 

  21. S.J. Lippard, J.M. Berg, in Principles of Bioinorganic Chemistry (University Science Books, Mill Valley CA 94941, USA, 1994)

    Google Scholar 

  22. V. Schünemann, H. Paulsen, Mössbauer spectroscopy, in Application of Physical Methods to Inorganic and Bioinorganic Chemistry, ed. By R.A. Scott, C.M. Lukehart (John Wiley and Sons, Ltd., 2007)

    Google Scholar 

  23. P. Gütlich, E. Bill, A.X. Trautwein, See Chapter 4 in: Mössbauer Spectroscopy and Tansition Metal Chemistry (Springer, Berlin, 2011)

    Google Scholar 

  24. L. Zecca, M. Gallorini, V. Schünemann, A.X. Trautwein, M. Gerlach, P. Riederer, P. Vezzoni, D. Tampellini, J. Neurochem. 76, 1766 (2001)

    Article  Google Scholar 

  25. G. Lang, W. Marshall, Proc. Phys. Soc. 87, 3 (1966)

    Article  ADS  Google Scholar 

  26. https://www.wissel-gmbh.de/index.php?option=com_content&task=view&id=55&Itemid=116

  27. https://mosswinn.com/

  28. https://www.wmoss.org/

  29. H.P. Gunnlaugsson, Spreadsheet based analysis of Mössbauer spectra. Hyperfine Interact. 237, 79 (2016)

    Google Scholar 

  30. P. Gütlich, E. Bill, A.X. Trautwein, See Chapter 2.6 in: Mössbauer Spectroscopy and Tansition Metal Chemistry (Springer, Berlin, 2011)

    Google Scholar 

  31. C. Le Caer, J.M. Dubois, J. Phys. E: Sci Instrum. 12, 1083 (1979)

    Article  ADS  Google Scholar 

  32. A. Abragam, M.H.L. Pryce, Proc. R. Soc. A 250, 135 (1951)

    ADS  Google Scholar 

  33. H.H. Wickman, M.P. Klein, D.A. Shirley, Phys. Rev. 152, 345–357 (1966)

    Article  ADS  Google Scholar 

  34. A.X. Trautwein, E. Bill, E.-L. Bominaar, H. Winkler, Struct. Bond. 78, 1–95 (1991)

    Article  Google Scholar 

  35. V. Schünemann, H. Winkler, Rep. Prog. Phys. 63, 263–353 (2000)

    Article  ADS  Google Scholar 

  36. H. Winkler, X.Q. Ding, M. Burkhardt, A.X. Trautwein, Hyperfine Interact. 91, 875 (1994)

    Article  ADS  Google Scholar 

  37. N. Blume, J.A. Tjon, Phys. Rev. 165, 446 (1968)

    Article  ADS  Google Scholar 

  38. E. Münck, J.L. Groves, T.A. Tumolillo, P.G. Debrunner, Comput. Phys. Commun. 5, 225–238 (1973)

    Article  ADS  Google Scholar 

  39. F. Neese, WIREs Comput. Mol. Sci. 8, e1327 (2018)

    Article  Google Scholar 

  40. https://gaussian.com/

  41. https://www.turbomole.org/

  42. W. Koch und M. C. Holthausen, A chemist’s guide to density functional theory, (Wiley, 2001)

    Google Scholar 

  43. https://www.rcsb.org/

  44. https://www.ccdc.cam.ac.uk/

  45. P. Gütlich, E. Bill, A.X. Trautwein, See Chapter 5 by F. Neese and T. Petrenko in: Mössbauer Spectroscopy and Tansition Metal Chemistry (Springer, Berlin, 2011)

    Google Scholar 

  46. F. Clemente, T. Vreven, M.J. Frisch, in C. ed. by Q. Biochemistry (Matta Wiley VCH, Weinheim, 2010), pp. 61–84

    Google Scholar 

  47. P. Gütlich, H.A. Goodwin, Spin crossover—an overall perspective, in Spin Crossover in Transition Metal Complexes. Topics in Current Chemistry, vol. 233, 1, ed. by P. Gütlich, H.A. Goodwin (Springer, Berlin, 2004)

    Google Scholar 

  48. O. Kahn, C.J. Martinez Sci. 279, 44 (1998)

    Google Scholar 

  49. E. Ruiz, Phys. Chem. Chem. Phys. 16, 14 (2014)

    Article  Google Scholar 

  50. T.G. Gopakumar, F. Matino, H. Naggert, A. Bannwarth, F. Tuczek, R. Berndt, Angew. Chem. Int. Ed. 51, 6262 (2012)

    Article  Google Scholar 

  51. J.A. Wolny, R. Diller, V. Schünemann, Eur. J. Inorg. Chem. 2635–2648 (2012)

    Google Scholar 

  52. P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. 13, 2024–2054 (1994)

    Article  Google Scholar 

  53. P. Gütlich, H.A. Goodwin (eds.), Spin Crossover in Transition Metal Complexes. Topics in Current Chemistry, vol. 233, 1 (Springer , Berlin, 2004)

    Google Scholar 

  54. P. Gütlich, E. Bill, A.X. Trautwein, in Mössbauer Spectroscopy and Tansition Metal Chemistry (Springer, Berlin, 2011)

    Google Scholar 

  55. A.-M. Li, T. Hochdörffer, J.A. Wolny, V. S., E. Rentschler, Magnetochemistry 4(3), 34 (2018)

    Google Scholar 

  56. B. Schäfer, T. Bauer, I. Faus, J. A. Wolny, F. Dahms, O. Fuhr, S. Lebedkin, H.-C. Wille, K. Schlage, K. Chevalier, F. Rupp, R. Diller, V. S., M. M. Kappes, M. Ruben, Dalton Trans. 46, 2289–2302 (2017)

    Google Scholar 

  57. A. Janoschka, G. Svenconis, V. Schünemann, J. Phys. Conf. Ser. 217, 012005 (2010)

    Article  Google Scholar 

  58. T. Bauer, A. Omlor, H. Auerbach, K. Jenni, B. Schäfer, R. Diller, M. Ruben, V. Schünemann, Hyperfine Interact. 238, 98 (2017)

    Article  ADS  Google Scholar 

  59. S. Stankov, R. Röhlsberger, T. Ślęzak, M. Sladecek, B. Sepiol, G. Vogl, A.I. Chumakov, R. Rüffer, N. Spiridis, J. Łażewski, K. Parliński, J. Korecki, Phys. Rev. Lett. 99, 185501 (2007)

    Article  ADS  Google Scholar 

  60. G. Félix, M. Mikolasek, H. Peng, W. Nicolazzi, G. Molnár, A.I. Chumakov, L. Salmon, A. Bousseksou, Phys. Rev. B 91, 024422 (2015)

    Article  ADS  Google Scholar 

  61. S. Rackwitz, I. Faus, B. Lägel, J. Linden, J. Marx, E. Oesterschulze, K. Schlage, H.-C. Wille, S. Wolff, J.A. Wolny, V. Schünemann, Hyperfine Interact. 226, 667 (2014)

    Article  ADS  Google Scholar 

  62. B. Schäfer, J.-F. Greisch, I. Faus, T. Bodenstein, I. Salitros, O. Fuhr, K. Fink, V. Schünemann, M.M. Kappes, M. Ruben, Angew. Chem. Int. Ed. 55, 10881–10885 (2016)

    Article  Google Scholar 

  63. Y.V. Shvyd’ko, Hyperfine Interact. 125, 173–188 (2000)

    Google Scholar 

  64. The Nobel Prize in Physiology or Medicine 1998. NobelPrize.org. Nobel Media AB 2019. Sun. 1 Dec 2019. https://www.nobelprize.org/prizes/medicine/1998/summary/

  65. J.M.C. Ribeiro, J.M.H. Hazzard, R. Nussenzveig, D. Champagne, F.A. Walker, Science 260, 539 (1993)

    Article  ADS  Google Scholar 

  66. B. Moeser, A. Janoschka, J.A. Wolny, H. Paulsen, I. Fillipov, R.E. Berry, H. Zhang, A.I. Chumakov, F.A. Walker, V. Schünemann, J. Am. Chem. Soc. 134(9), 4216–4228 (2012)

    Article  Google Scholar 

  67. R.L. Collins, J. Chem. Phys. 42(3), 1072–1080 (1965)

    Article  ADS  Google Scholar 

  68. W.T. Oosterhuis, G.J. Lang, Chem. Phys. 50, 4381–4387 (1969)

    ADS  Google Scholar 

  69. C.P.S. Taylor, Biochim. Biophys. Acta 491, 137–149 (1977)

    Article  Google Scholar 

  70. C. Keppler, K. Achterhold, A. Ostermann, U. van Bürck, A.I. Chumakov, R. Rüffer, W. Stuhrhahn, E.E. Alp, F.G. Parak, Eur. Biophys. J. 29, 146 (2000)

    Article  Google Scholar 

  71. F.G. Parak, Rep. Prog. Phys. 66, 103 (2003)

    Article  ADS  Google Scholar 

  72. C. Herta, H. Winkler, R. Benda, M. Haas, A.X. Trautwein, Eur. Biophys. J. 31, 478 (2002)

    Article  Google Scholar 

  73. J.T. Sage, S.M. Durbin, W. Stuhrhahn, D.C. Wharton, P.M. Champion, P. Hession, J. Sutter, E.E. Alp, Phys. Rev. Lett. 86, 4966 (2001)

    Article  ADS  Google Scholar 

  74. K. Achterhold, C. Keppler, A. Ostermann, U. van Bürck, W. Stuhrhahn, E.E. Alp, F.G. Parak, Phys. Rev. E 65, 051916 (2002)

    Article  ADS  Google Scholar 

  75. K. Achterhold, W. Stuhrhahn, E.E. Alp, F.G. Parak, Hyperfine Interact. 141/142, 3 (2002)

    Google Scholar 

  76. K. Achterhold, F.G. Parak, J. Phys, Condens. Matter 15, 1683 (2003)

    Article  ADS  Google Scholar 

  77. A. Weichsel, E.M. Maes, J.F. Andersen, J.G. Valenzuela, TKh. Shokhireva, F.A. Walker, W.R. Montfort, PNAS 102(3), 594 (2005)

    Article  ADS  Google Scholar 

  78. R. Christmann, H. Auerbach, R.E. Berry, F.A. Walker, V. Schünemann, Hyperfine Interact. 237, 19 (2016)

    Article  ADS  Google Scholar 

  79. H. Beinert, J. Biol. Inorg. Chem. 5, 2–15 (2000)

    Article  Google Scholar 

  80. H. Beinert, R.H. Holm, E. Münck, Science 277, 653–659 (1997)

    Article  Google Scholar 

  81. P. Wegner, M. Bever, V. Schünemann, A.X. Trautwein, C. Schmidt, H. Bönisch, M. Gnida, W. Meyer-Klaucke, Hyperf. Interact. 156(157), 293–298 (2004)

    Article  ADS  Google Scholar 

  82. B.F. Matzanke, S. Anemüller, V. Schünemann, A.X. Trautwein, K. Hantke, Biochemistry 43(5), 1386–1392 (2004)

    Article  Google Scholar 

  83. G. Layer, K. Grage, T. Teschner, V. Schünemann, D. Breckau, A. Masoumi, M. Jahn, P. Heathcote, A.X. Trautwein, D. Jahn. J. Biol. Chem. 280(32), 29038–29046 (2005)

    Article  Google Scholar 

  84. D. Barthelme, U. Scheele, S. Dinkelaker, A. Janoschka, F. MacMillan, S.V. Albers, A.J.M. Driessen, M.S. Stagni, W. Meyer-Klaucke, V. Schünemann, R. Tampe, J. Biol. Chem. 282(19), 14598–14607 (2007)

    Article  Google Scholar 

  85. C.E. Schulz, P.G. Debrunner J. Physique, Colloq. 37, 153 (1976)

    Google Scholar 

  86. J.A. Fee, K.L. Findling, T. Yoshida, R. Hille, G.E. Tarr, D.O. Hearshen, W.R. Dunham, E.P. Day, T. Kent, E. Münck, J. Biol. Chem. 259, 124–133 (1984)

    Article  Google Scholar 

  87. K. Stegmaier, C.M. Blinn, D.F. Bechtel, C. Greth, H. Auerbach, C.S. Müller, V. Jakob, E.J. Rejerze, D. Netz, V. Schünemann, A.J. Pierik, J. Am. Chem. Soc. 141, 5753 (2019)

    Article  Google Scholar 

  88. T.O. Bauer, D. Graf, T. Lamparter, V. Schünemann, Hyperfine Interact. 226, 445–449 (2014)

    Article  ADS  Google Scholar 

  89. W. Eisenreich, F. Rohdich, A. Bacher, Trends Plant Sci. 6, 78–84 (2001)

    Article  Google Scholar 

  90. M. Seemann, K. Janthawornpong, J. Schweizer, L.H. Böttger, A. Janoschka, A. Ahrens-Botzong, M.N. Tambou, O. Rotthaus, A.X. Trautwein, M. Rohmer, V. Schünemann, J. Am. Chem. Soc. 131(37), 13184 (2009)

    Article  Google Scholar 

  91. W. Wang, J. Li, K. Wang, T.I. Smirnova, E. Oldfield, J. Am. Chem. Soc. 133, 6525 (2011)

    Article  Google Scholar 

  92. I. Span, K. Wang, W. Wang, J. Jauch, W. Eisenreich, A. Bacher, E. Oldfield, M. Groll, Angew. Chem. Int. Ed. 52, 2118 (2013)

    Article  Google Scholar 

  93. A. Ahrens-Botzong, K. Janthawornpong, J.A. Wolny, E.N. Tombou, M. Rohmer, S. Krasutzsky, C.D. Poulter, V. Schünemann, M. Seemann, Angew. Chem. Int. Ed. 50, 11976 (2011)

    Article  Google Scholar 

  94. B.J. Vaccaro, S.M. Clarkson, J.F. Holden, D.-W. Lee, C.-H. Wu, F.L. Poole, J.J.H. Cotelesage, M.J. Hackett, S. Mohebbi, J. Sun, H. Li, M.K. Johnson, G.N. George, M.W.W. Adams, Nat. Commun. 8, 16110 (2017)

    Article  ADS  Google Scholar 

  95. K.G. Padmalekha, H. Huang, I. Ellmers, R. Perez Velez, J. van Leusen, A. Brückner, W. Grünert, V. Schünemann, Hyperfine Interact. 238, 80 (2017)

    Google Scholar 

  96. S. Wagner, H. Auerbach, Dr. C.E. Tait, I. Martinaiou, S.C.N. Kumar, C. Kübel, I. Sergeev, H.‐C. Wille, J. Behrends, J.A. Wolny, V. Schünemann, U.I. Kramm, Angew. Chemie Int. Ed. 58 (31), 10486 (2019)

    Google Scholar 

  97. S. Sakshath, K. Jenni, L. Scherthan, P. Würtz, M. Herlitschke, I. Sergeev, C. Strohm, H.-C. Wille, R. Röhlsberger, J.A. Wolny, V. Schünemann, Hyperfine Interact. 238, 89 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The experimental and theoretical work presented in this chapter has been performed by the members of the Biophysics and Medical Physics group at the Department of Physics at TU Kaiserslautern and the many collaborators of the group. Special thanks goes to Dr. H. Auerbach and Dr. A. Reinhardt for their support with the drawing of several figures. The author would like to thank Dr. J. A. Wolny for his continuing work in the field of SCO research and quantum chemical calculations. Several students contributed to the publications referenced in this chapter. In addition to Dr. H. Auerbach and Dr. A. Reinhardt mentioned already above, I want to name Dr. B. Moeser, Dr. A. Janoschka, Dr. S. Rackwitz, Dr. I. Faus and Dr. T. O. Bauer. On behalf of the many outstanding biochemists and chemists with whom the author has worked over the last two decades, special thanks are due to Prof. F. Ann Walker for her continuous support and guidance.

This work is dedicated in memoriam of two longtime companions. My academic teacher and mentor Prof. Dr. A. X. Trautwein as well as to one of his students with whom I had the pleasure to work with, Dr. P. Wegner, who passed away much too early.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schünemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schünemann, V. (2021). From Small Molecules to Complex Systems: A Survey of Chemical and Biological Applications of the Mössbauer Effect. In: Yoshida, Y., Langouche, G. (eds) Modern Mössbauer Spectroscopy. Topics in Applied Physics, vol 137. Springer, Singapore. https://doi.org/10.1007/978-981-15-9422-9_4

Download citation

Publish with us

Policies and ethics