Skip to main content

Quantum Optical Phenomena in Nuclear Resonant Scattering

  • Chapter
  • First Online:
Modern Mössbauer Spectroscopy

Part of the book series: Topics in Applied Physics ((TAP,volume 137))

Abstract

With the advent of high-brilliance, accelerator-driven light sources such as modern synchrotron radiation sources or x-ray lasers, it has become possible to extend quantum optical concepts into the x-ray regime. Owing to the availability of single photon x-ray detectors with quantum efficiencies close to unity and photon-number resolving capabilities, fundamental phenomena of quantum optics can now also be studied at Angstrom wavelengths. A key role in the emerging field of x-ray quantum optics is taken by the nuclear resonances of Mössbauer isotopes. Their narrow resonance bandwidth facilitates high-precision studies of fundamental aspects of the light-matter interaction. A very accurate tuning of this interaction is possible via a controlled placement of Mössbauer nuclei in planar thin-film waveguides that act as cavities for x-rays. A decisive aspect in contrast to conventional forward scattering is that the cavity geometry facilitates the excitation of cooperative radiative eigenstates of the embedded nuclei. The multiple interaction of real and virtual photons with a nuclear ensemble in a cavity leads to a strong superradiant enhancement of the resonant emission and a strong radiative level shift, known as collective Lamb shift. Meanwhile, thin-film x-ray cavities and multilayers have evolved into an enabling technology for nuclear quantum optics. The radiative coupling of such ensembles in the cavity field can be employed to generate atomic coherences between different nuclear levels, resulting in phenomena including electromagnetically induced transparency, spontaneously generated coherences, Fano resonances and others. Enhancing the interaction strength between nuclei in photonic structures like superlattices and coupled cavities facilitates to reach the regime of collective strong coupling of light and matter where phenomena like normal mode splitting and Rabi oscillations appear. These developments establish Mössbauer nuclei as a promising platform to study quantum optical effects at x-ray energies. In turn, these effects bear potential to advance the instrumentation and applications of Mössbauer science as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a great part of the literature about the collective Lamb shift the values given are valid only for the initial phase of the temporal evolution where the decay can be considered superradiant.

  2. 2.

    The directional emission of single photons has been called counterintuitive [9] since no macroscopic dipole moment is involved in the single-excitation timed Dicke state Eq. (3.9) like it is the case, e.g., for a fully inverted system. Therefore one might expect that a weakly excited system radiates with an undirected emission pattern as a single atom does. The directionality, however, is just another consequence of the coherence involved in the scattering process.

References

  1. R. Loudon, The Quantum Theory of Light (Oxford University Press, 1983)

    Google Scholar 

  2. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997)

    Google Scholar 

  3. M. Fox, Quantum Optics (Oxford University Press, 2006)

    Google Scholar 

  4. G.S. Agarwal, Quantum Optics (Cambridge University Press, 2013)

    Google Scholar 

  5. S.L. Ruby, Mössbauer experiments without conventional sources. J. Phys. (Paris) Colloq. 35, C6–209 (1974)

    Google Scholar 

  6. R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation. Basic Principles, Methodology and Applications. Number 208 in Springer Tracts in Modern Physics (Springer, Berlin, Heidelberg, 2004)

    Google Scholar 

  7. Kwang-Je Kim, Yuri Shvyd’ko, Sven Reiche, A proposal for an x-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 100, 244802 (2008)

    Article  ADS  Google Scholar 

  8. B.W. Adams et al., Scientific opportunities with an x-ray free-electron laser oscillator. arXiv:1903.09317 [physics.ins-det] (2019)

  9. M.O. Scully, E.S. Fry, C.H. Raymond Ooi, K. Wódkiewicz, Directed spontaneous emission from an extended ensemble of \(N\) atoms: timing is everything. Phys. Rev. Lett. 96, 010501 (2006)

    Google Scholar 

  10. J.H. Eberly, Emission of one photon in an electric dipole transition of one among \(N\) atoms. J. Phys. B Atom. Molec. Opt. Phys. 39, S599 (2006)

    Article  ADS  Google Scholar 

  11. A. Svidzinsky, J.-T. Chang, Cooperative spontaneous emission as a many-body eigenvalue problem. Phys. Rev. A 77, 043833 (2008)

    Google Scholar 

  12. R. Friedberg, J.T. Manassah, Effects of including the counterrotating term and virtual photons on the eigenfunctions and eigenvalues of a scalar photon collective emission theory. Phys. Lett. A 372, 2514–2521 (2008)

    Google Scholar 

  13. R. Friedberg, J.T. Manassah, Electromagnetic decay modes in a spherical sample of two-level atoms. Phys. Lett. A 372, 6833–6842 (2008)

    Google Scholar 

  14. D. Porras, J.I. Cirac, Collective generation of quantum states of light by entangled atoms. Phys. Rev. A 78, 053816 (2008)

    Article  ADS  Google Scholar 

  15. M.O. Scully, A.A. Svidzinsky, The super of superradiance. Science 325, 1510–1511 (2009)

    Google Scholar 

  16. M.O. Scully, A.A. Svidzinsky, The effects of the \(N\) atom collective Lamb shift on single photon superradiance. Phys. Lett. A 373, 1283–1286 (2009)

    Google Scholar 

  17. L.H. Pedersen, K. Mølmer, Few qubit atom-light interfaces with collective encoding. Phys. Rev. A 79, 012320 (2009)

    Google Scholar 

  18. A.A. Svidzinsky, M.O. Scully, Evolution of collective \(N\) atom states in single photon superradiance: effect of virtual Lamb shift processes. Opt. Commun. 282, 2894–2897 (2009)

    Article  ADS  Google Scholar 

  19. A.A. Svidzinsky, M.O. Scully, On the evolution of \(N\)-atom state prepared by absorption of a single photon. Opt. Commun. 283, 753–757 (2010)

    Google Scholar 

  20. R. Friedberg, Refinement of a formula for decay after weak coherent excitation of a sphere. Annals Phys. 325, 345–358 (2010)

    Article  ADS  Google Scholar 

  21. A.A. Svidzinsky, J.-T. Chang, M.O. Scully, Cooperative spontaneous emission of \(n\) atoms: many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of \(n\) classical oscillators. Phys. Rev. A 81, 053821 (2010)

    Google Scholar 

  22. P.R. Berman, J.-L. Le Gouët, Phase-matched emission from an optically thin medium following one-photon pulse excitation: Energy considerations. Phys. Rev. A 83, 035804 (2011)

    Article  ADS  Google Scholar 

  23. A.M. Afanas’ev, Yu. Kagan, Theory of hyperfine structure of the Mössbauer line in paramagnetic substances. Sov. Phys. JETP 18, 1139–1149 (1964)

    Google Scholar 

  24. J.P. Hannon, G.T. Trammell, Mössbauer diffraction. I. Quantum theory of gamma-ray and x-ray optics. Phys. Rev. 169, 315–329 (1968)

    Google Scholar 

  25. J.P. Hannon, G.T. Trammell, Mössbauer diffraction. II. Dynamical theory of Mössbauer optics. Phys. Rev. 186, 306–325 (1969)

    Google Scholar 

  26. J.P. Hannon, G.T. Trammell, Coherent \(\gamma \)-ray optics. Hyperfine Interactions 123, 127–274 (1999)

    Article  Google Scholar 

  27. R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, R. Rüffer, Collective Lamb shift in single photon superradiance. Science 328, 1248 (2010)

    Google Scholar 

  28. R. Röhlsberger, H.C. Wille, K. Schlage, B. Sahoo, Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2012)

    Article  ADS  Google Scholar 

  29. K.P. Heeg, H.-C. Wille, K. Schlage, T. Guryeva, D. Schumacher, I. Uschmann, K.S. Schulze, B. Marx, T. Kämpfer, G.G. Paulus, R. Röhlsberger, J. Evers, Vacuum-assisted generation and control of atomic coherences at x-ray energies. Phys. Rev. Lett. 111, 073601 (2013)

    Google Scholar 

  30. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  ADS  Google Scholar 

  31. R. Friedberg, S.R. Hartmann, J.T. Manassah, Frequency shifts in emission and absorption by resonant systems ot two-level atoms. Phys. Reports 7, 101–179 (1973)

    Article  ADS  Google Scholar 

  32. R. Wiegner, J. von Zanthier, G.S. Agarwal, Quantum-interference-initiated superradiant and subradiant emission from entangled atoms. Phys. Rev. A 84, 023805 (2011)

    Article  ADS  Google Scholar 

  33. A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nature Photon. 3, 706 (2009)

    Google Scholar 

  34. M. Sarovar, A. Ishizaki, G.R. Fleming, K.B. Whaley, Quantum entanglement in photosynthetic light-harvesting complexes. Nature Phys. 6, 462 (2010)

    Google Scholar 

  35. K.P. Heeg, J. Evers, X-ray quantum optics with Mössbauer nuclei embedded in thin-film cavities. Phys. Rev. A 88, 043828 (2013)

    Google Scholar 

  36. K.P. Heeg, J. Haber, D. Schumacher, L. Bocklage, H.-C. Wille, K.S. Schulze, R. Loetzsch, I. Uschmann, G.G. Paulus, R. Rüffer, R. Röhlsberger, J. Evers, Tunable subluminal propagation of narrow-band x-ray pulses. Phys. Rev. Lett. 114, 203601 (2015)

    Google Scholar 

  37. K.P. Heeg, J. Evers, Collective effects between multiple nuclear ensembles in an x-ray cavity-QED setup. Phys. Rev. A 91, 063803 (2015)

    Google Scholar 

  38. J. Haber, K.S. Schulze, K. Schlage, R. Loetzsch, L. Bocklage, T. Gurieva, H. Bernhardt, H.C. Wille, R. Rüffer, I. Uschmann, G.G. Paulus, R. Röhlsberger, Collective strong coupling of x-rays and nuclei in a nuclear optical lattice. Nature Photon. 10, 445 (2016)

    Google Scholar 

  39. J. Haber, X. Kong, C. Strohm, S. Willing, J. Gollwitzer, L. Bocklage, R. Rüffer, A. Pálffy, R. Röhlsberger, Rabi oscillations of x-ray radiation between two nuclear ensembles. Nature Photon. 11, 720–725 (2017)

    Google Scholar 

  40. D. Lentrodt, K.P. Heeg, C.H. Keitel, Jörg Evers, Ab initio quantum models for thin-film x-ray cavity QED. Phys. Rev. Res. 2, 023396 (2020)

    Article  Google Scholar 

  41. M.O. Scully, Collective Lamb shift in single photon Dicke superradiance. Phys. Rev. Lett. 102, 143601 (2009)

    Google Scholar 

  42. R. Friedberg, J.T. Manassah, Cooperative Lamb shift and the cooperative decay rate for an initially detuned phased state. Phys. Rev. A 81, 043845 (2010)

    Google Scholar 

  43. J.T. Manassah, Cooperative radiation from atoms in different geometries: decay rate and frequency shift. Adv. Opt. Photon. 4, 108–156 (2012)

    Google Scholar 

  44. J. Ruostekoski, J. Javanainen, Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases. Phys. Rev. Lett. 117, 143602 (2016)

    Google Scholar 

  45. J. Keaveney, A. Sargsyan, U. Krohn, I.G. Hughes, D. Sarkisyan, C.S. Adams, Cooperative Lamb shift in an atomic vapor layer of nanometer thickness. Phys. Rev. Lett. 108, 173601 (2012)

    Article  ADS  Google Scholar 

  46. Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, R. Ozeri, Cooperative Lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014)

    Article  ADS  Google Scholar 

  47. S.J. Roof, K.J. Kemp, M.D. Havey, I.M. Sokolov, Observation of single-photon superradiance and the cooperative Lamb shift in an extended sample of cold atoms. Phys. Rev. Lett. 117, 073003 (2016)

    Article  ADS  Google Scholar 

  48. T. Peyrot, Y.R.P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I.G. Hughes, C.S. Adams, Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity. Phys. Rev. Lett. 120, 243401 (2018)

    Article  ADS  Google Scholar 

  49. N. Auerbach, V. Zelevinsky, Super-radiant dynamics, doorways and resonances in nuclei and other open mesoscopic systems. Reports Progr. Phys. 74, 106301 (2011)

    Article  ADS  Google Scholar 

  50. U. van Bürck, Coherent pulse propagation through resonant media. Hyperfine Interactions 123(124), 483–509 (1999)

    Article  Google Scholar 

  51. E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C.P. Klages, J.P. Hannon, Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet. Phys. Rev. Lett. 54, 835–838 (1985)

    Article  ADS  Google Scholar 

  52. J.B. Hastings, D.P. Siddons, U. van Bürck, R. Hollatz, U. Bergmann, Mössbauer spectroscopy using synchrotron radiation. Phys. Rev. Lett. 66, 770–773 (1991)

    Article  ADS  Google Scholar 

  53. E. Gerdau, H. de Waard (eds.), Nuclear resonant scattering of synchrotron radiation, part A, in Hyperfine Interactions, vol. 123/124 (Springer, 1999)

    Google Scholar 

  54. E. Gerdau, H. de Waard (eds.), Nuclear resonant scattering of synchrotron radiation, part B, in Hyperfine Interactions, vol. 125 (Springer, 2000)

    Google Scholar 

  55. W. Sturhahn, E. Gerdau, Evaluation of time-differential measurements of nuclear-resonance scattering of x rays. Phys. Rev. B 49, 9285–9294 (1994)

    Article  ADS  Google Scholar 

  56. W.E. Lamb, Robert C. Retherford, Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947)

    Article  ADS  Google Scholar 

  57. R. Friedberg, J.T. Manassah, The dynamical cooperative Lamb shift in a system of two-level atoms in a slab-geometry. Phys. Lett. A 373, 3423–3429 (2009)

    Article  ADS  Google Scholar 

  58. J.T. Manassah, The dynamical cooperative Lamb shift in a system of two-level atoms in a sphere in the scalar photon theory. Laser Phys. 20, 259–269 (2010)

    Google Scholar 

  59. C. Greiner, B. Boggs, T.W. Mossberg, Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity. Phys. Rev. Lett. 85, 3793–3796 (2000)

    Article  ADS  Google Scholar 

  60. D. Fröhlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H. Stolz, W. von der Osten, Coherent propagation and quantum beats of quadrupole polaritons in Cu\(_2\)O. Phys. Rev. Lett. 67, 2343–2346 (1991)

    Article  ADS  Google Scholar 

  61. R. Röhlsberger, Cooperative emission from nuclei: the collective Lamb shift and electromagnetically induced transparency. Fortschritte der Physik 61, 360–376 (2013)

    Article  ADS  Google Scholar 

  62. A.A. Svidzinsky, J.-T. Chang, Marlan O. Scully, Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of \(n\) atoms. Phys. Rev. Lett. 100, 160504 (2008)

    Article  ADS  Google Scholar 

  63. A.A. Svidzinsky, Nonlocal effects in single-photon superradiance. Phys. Rev. A 85, 013821 (2012)

    Google Scholar 

  64. Yu.V. Shvyd’ko, G.V. Smirnov, Experimental study of time and frequency properties of collective nuclear excitations in a single crystal (gamma-ray resonance). J. Phys. Condensed Matter 1, 10563 (1989)

    Google Scholar 

  65. J.T. Manassah, Giant cooperative Lamb shift in a density-modulated slab of two-level atoms. Phys. Lett. A 374, 1985–1988 (2010)

    Google Scholar 

  66. R. Röhlsberger, Theory of x-ray grazing incidence reflection in the presence of nuclear resonance excitation. Hyperfine Interactions 123(124), 301–325 (1999)

    Article  Google Scholar 

  67. R. Röhlsberger, J. Evers, S. Shwartz. Quantum and Nonlinear Optics with Hard X-Rays, ed. by E. Jaeschke, S. Khan, J.R. Schneider, J.B. Hastings (Springer International Publishing, Cham, 2014), pp. 1–28

    Google Scholar 

  68. P. Longo, C.H. Keitel, J. Evers, Tailoring superradiance to design artificial quantum systems. Sci. Rep. 6, 23628 (2016)

    Google Scholar 

  69. F. Pfeiffer, C. David, M. Burghammer, C. Riekel, T. Salditt, Two-dimensional x-ray waveguides and point sources. Science 297, 230–234 (2002)

    Article  ADS  Google Scholar 

  70. K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)

    Google Scholar 

  71. K.-J. Boller, A. Imamoğlu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991)

    Article  ADS  Google Scholar 

  72. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Google Scholar 

  73. L.G. Parratt, Surface studies of solids by total reflection of x-rays. Phys. Rev. 95, 359–369 (1954)

    Article  ADS  Google Scholar 

  74. W. Sturhahn, CONUSS and PHOENIX: evaluation of nuclear resonant scattering data. Hyperfine Interactions 125, 149–172 (2000)

    Article  Google Scholar 

  75. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd edn. (Artech House, Norwood MA, 2005)

    Google Scholar 

  76. D. Lentrodt, J. Evers, Ab initio few-mode theory for quantum potential scattering problems. Phys. Rev. X 10, 011008 (2020)

    Google Scholar 

  77. C. Gardiner, P. Zoller (eds.), Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer Series in Synergetics, Springer, Heidelberg, 2004)

    Google Scholar 

  78. B. Marx, K.S. Schulze, I. Uschmann, T. Kämpfer, R. Lötzsch, O. Wehrhan, W. Wagner, C. Detlefs, T. Roth, J. Härtwig, E. Förster, T. Stöhlker, G.G. Paulus, High-precision x-ray polarimetry. Phys. Rev. Lett. 110, 254801 (2013)

    Article  ADS  Google Scholar 

  79. K.P. Heeg, C. Ott, D. Schumacher, H.-C. Wille, R. Röhlsberger, T. Pfeifer, J. Evers, Interferometric phase detection at x-ray energies via fano resonance control. Phys. Rev. Lett. 114, 207401 (2015)

    Article  ADS  Google Scholar 

  80. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  Google Scholar 

  81. A.E. Miroshnichenko, S. Flach, Yuri S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  82. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photon. 11, 543 (2017)

    Article  Google Scholar 

  83. C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C.H. Keitel, C.H. Greene, T. Pfeifer, Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013)

    Google Scholar 

  84. K.P. Heeg, A. Kaldun, C. Strohm, P. Reiser, C. Ott, R. Subramanian, D. Lentrodt, J. Haber, H.-C. Wille, S. Goerttler, R. Rüffer, C.H. Keitel, R. Röhlsberger, T. Pfeifer, J. Evers, Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances. Science 357, 375–378 (2017)

    Article  ADS  Google Scholar 

  85. P.M. Anisimov, J.P. Dowling, B.C. Sanders, Objectively discerning autler-townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011)

    Google Scholar 

  86. H. Yueyun, W. Liu, Y. Sun, X. Shi, J. Jiang, Y. Yang, S. Zhu, J. Evers, H. Chen, Electromagnetically-induced-transparency-like phenomenon with resonant meta-atoms in a cavity. Phys. Rev. A 92, 053824 (2015)

    Google Scholar 

  87. G.S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches. Springer Tracts in Modern Physics (Springer, 1974)

    Google Scholar 

  88. Z. Ficek, S. Swain, Quantum Interference and Coherence: Theory and Experiment. Springer Series in Optical Sciences (Springer, Heidelberg, 2005)

    Google Scholar 

  89. M. Kiffner, M. Macovei, J. Evers, C.H. Keitel, Vacuum-induced processes in multilevel atoms. Progress Opt. 55, 85–197 (2010)

    Article  ADS  Google Scholar 

  90. M. Kiffner, J. Evers, C.H. Keitel, Quantum interference enforced by time-energy complementarity. Phys. Rev. Lett. 96, 100403 (2006)

    Article  ADS  Google Scholar 

  91. G.S. Agarwal, Anisotropic vacuum-induced interference in decay channels. Phys. Rev. Lett. 84, 5500–5503 (2000)

    Article  ADS  Google Scholar 

  92. P. Zhou, S. Swain, Cavity engineering of quantum interference. Opt. Commun. 179, 267–274 (2000)

    Google Scholar 

  93. G.V. Smirnov, U. van Bürck, A.I. Chumakov, A.Q.R. Baron, R. Rüffer, Synchrotron Mössbauer source. Phys. Rev. B 55, 5811–5815 (1997)

    Article  ADS  Google Scholar 

  94. T. Mitsui, M. Seto, R. Masuda, K. Kiriyama, Y. Kobayashi, Synchrotron radiation Mössbauer spectroscopy using Doppler-shifted 14.4 keV single-line \(^{57}\)Fe-Mössbauer radiation. Japan. J. Appl. Phys. 46(7L), 703 (2007)

    Google Scholar 

  95. V. Potapkin, A.I. Chumakov, G.V. Smirnov, J.-P. Celse, R. Rüffer, C. McCammon, L. Dubrovinsky, The \({^{57}}\)Fe synchrotron Mössbauer source at the ESRF. J. Sync. Radiat. 19, 559–569 (2012)

    Google Scholar 

  96. T.S. Toellner, E.E. Alp, W. Sturhahn, T.M. Mooney, X. Zhang, M. Ando, Y. Yoda, S. Kikuta, Polarizer/analyzer filter for nuclear resonant scattering of synchrotron radiation. Appl. Phys. Lett. 67, 1993–1995 (1995)

    Article  ADS  Google Scholar 

  97. X. Kong, A. Pálffy, Stopping narrow-band x-ray pulses in nuclear media. Phys. Rev. Lett. 116, 197402 (2016)

    Google Scholar 

  98. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  ADS  Google Scholar 

  99. M.G. Raizen, L.A. Orozco, M. Xiao, T.L. Boyd, H.J. Kimble, Squeezed-state generation by the normal modes of a coupled system. Phys. Rev. Lett. 59, 198–201 (1987)

    Google Scholar 

  100. S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms (Oxford University Press, Cavities and Photons, 2006)

    Google Scholar 

  101. B. Dromey, Strong coupling of light goes nuclear. Nature Photon. 10, 436 (2016)

    Article  ADS  Google Scholar 

  102. D. Goldberg, L.I. Deych, A.A. Lisyansky, Z. Shi, V.M. Menon, V. Tokranov, M. Yakimov, S. Oktyabrsky, Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nature Photon. 3, 662 (2009)

    Google Scholar 

  103. A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J.J. Baumberg, M.A. Kaliteevski, Z. Hatzopoulos, P.G. Savvidis, Bragg polaritons: strong coupling and amplification in an unfolded microcavity. Phys. Rev. Lett. 106, 076401 (2011)

    Article  ADS  Google Scholar 

  104. A. Schilke, C. Zimmermann, P.W. Courteille, W. Guerin, Optical parametric oscillation with distributed feedback in cold atoms. Nature Photon. 6, 101 (2012)

    Article  ADS  Google Scholar 

  105. N. Kaina, M. Fink, G. Lerosey, Composite media mixing Bragg and local resonances for highly attenuating and broad bandgaps. Sci. Reports 3, 3240 (2013)

    Google Scholar 

  106. I.H. Deutsch, R.J.C. Spreeuw, S.L. Rolston, W.D. Phillips, Photonic band gaps in optical lattices. Phys. Rev. A 52, 1394–1410 (1995)

    Article  ADS  Google Scholar 

  107. M. Weidemüller, A. Hemmerich, A. Görlitz, T. Esslinger, T.W. Hänsch, Bragg diffraction in an atomic lattice bound by light. Phys. Rev. Lett. 75, 4583–4586 (1995)

    Google Scholar 

  108. M. Hübner, J.P. Prineas, C. Ell, P. Brick, E.S. Lee, G. Khitrova, H.M. Gibbs, S.W. Koch, Optical lattices achieved by excitons in periodic quantum well structures. Phys. Rev. Lett. 83, 2841–2844 (1999)

    Article  ADS  Google Scholar 

  109. E.L. Ivchenko, A.N. Poddubny, Resonant diffraction of electromagnetic waves from solids (a review). Phys. Solid State 55, 905–923 (2013)

    Article  ADS  Google Scholar 

  110. R. Röhlsberger, E. Witthoff, E. Gerdau, E. Lüken, Observation of nuclear diffraction from multilayers with a Fe/\(^{57}\)Fe superstructure. J. Appl. Phys. 74, 1933–1937 (1993)

    Article  ADS  Google Scholar 

  111. L. Deak, G. Bayreuther, L. Bottyan, E. Gerdau, J. Korecki, E.I. Kornilov, H.J. Lauter, O. Leupold, D.L. Nagy, A.V. Petrenko, V.V. Pasyuk-Lauter, H. Reuther, E. Richter, R. Röhloberger, E. Szilagyi, Pure nuclear Bragg reflection of a periodic \(^{56}\)Fe/\(^{57}\)Fe multilayer. J. Appl. Phys. 85, 1–7 (1999)

    Article  ADS  Google Scholar 

  112. A.I. Chumakov, G.V. Smirnov, A.Q.R. Baron, J. Arthur, D.E. Brown, S.L. Ruby, G.S. Brown, N.N. Salashchenko, Resonant diffraction of synchrotron radiation by a nuclear multilayer. Phys. Rev. Lett. 71, 2489–2492 (1993)

    Article  ADS  Google Scholar 

  113. A.I. Chumakov, L. Niesen, D.L. Nagy, E.E. Alp, Nuclear resonant scattering of synchrotron radiation by multilayer structures. Hyperfine Interactions 123, 427–454 (1999)

    Article  Google Scholar 

  114. Y.D. Chong, D.E. Pritchard, M. Soljačić, Quantum theory of a resonant photonic crystal. Phys. Rev. B 75, 235124 (2007)

    Google Scholar 

  115. S. Rist, P. Vignolo, G. Morigi, Photonic spectrum of bichromatic optical lattices. Phys. Rev. A 79, 053822 (2009)

    Google Scholar 

  116. T. Ikawa, K. Cho, Fate of the superradiant mode in a resonant Bragg reflector. Phys. Rev. B 66, 085338 (2002)

    Google Scholar 

  117. A. Salomon, R.J. Gordon, Y. Prior, T. Seideman, M. Sukharev, Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film. Phys. Rev. Lett. 109, 073002 (2012)

    Google Scholar 

  118. J. Haber, Hard X-ray Quantum Optics in Thin Film Nanostructures. Ph.D. Thesis, University of Hamburg, Germany (2017)

    Google Scholar 

  119. S. Jorda, U. Rössler, D. Broido, Fine structure of excitons and polariton dispersion in quantum wells. Phys. Rev. B 48, 1669–1677 (1993)

    Article  ADS  Google Scholar 

  120. E.L. Ivchenko, A.I. Nesvizhskii, S. Jorda, Resonant Bragg reflection from quantum-well structures. Superlattices Microstruct. 16, 17–20 (1994)

    Article  ADS  Google Scholar 

  121. M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S.W. Koch, R. Hey, K. Ploog, Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures. Phys. Rev. Lett. 76, 4199–4202 (1996)

    Article  ADS  Google Scholar 

  122. J.P. Prineas, C. Ell, E.S. Lee, G. Khitrova, H.M. Gibbs, S.W. Koch, Exciton-polariton eigenmodes in light-coupled In\(_{0.04}\)Ga\(_{0.96}\)As/GaAs semiconductor multiple-quantum-well periodic structures. Phys. Rev. B 61, 13863–13872 (2000)

    Google Scholar 

  123. M.V. Erementchouk, L.I. Deych, A.A. Lisyansky, Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures. Phys. Rev. B 71, 235335 (2005)

    Article  ADS  Google Scholar 

  124. J. Majer, M. Chow, J.M. Gambetta, J. Koch, B.R. Johnson, J.A. Schreier, L. Frunzio, D.I. Schuster, A.A. Houck, A. Wallraff, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Coupling superconductive circuits via a cavity bus. Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  125. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010)

    Article  ADS  Google Scholar 

  126. J. Simon, W.S. Bakr, R. Ma, M. Eric Tai, P.M. Preiss, M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011)

    Google Scholar 

  127. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Google Scholar 

  128. I. Bloch, J. Dalibard, S. Nascimbene, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012)

    Google Scholar 

  129. Y.O. Dudin, L. Li, F. Bariani, A. Kuzmich, Observation of coherent many-body Rabi oscillations. Nature Phys. 8, 790–794 (2012)

    Article  ADS  Google Scholar 

  130. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche, Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996)

    Article  ADS  Google Scholar 

  131. J.-M. Raimond, M. Brune, S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Google Scholar 

  132. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  ADS  Google Scholar 

  133. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, A. Scherer, Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006)

    Google Scholar 

  134. Yu. Kagan, A.M. Afanas’ev, V.G. Kohn, On excitation of isomeric nuclear states in a crystal by synchrotron radiation. J. Phys. C Solid State Phys. 12, 615 (1979)

    Article  ADS  Google Scholar 

  135. B. Sahoo, K. Schlage, J. Major, U. von Hörsten, W. Keune, H. Wende, R. Röhlsberger, Preparation and characterization of ultrathin stainless steel films. AIP Conf. Proc. 1347, 57–60 (2011)

    Article  ADS  Google Scholar 

  136. P. Emma et al., First lasing and operation of an Ångström-wavelength free-electron laser. Nature Photon. 4, 641 (2010)

    Article  ADS  Google Scholar 

  137. Tetsuya Ishikawa et al., A compact x-ray free-electron laser emitting in the sub-Ångström region. Nature Photon. 6, 540 (2012)

    Article  ADS  Google Scholar 

  138. M. Altarelli et al., The European x-ray free-electron laser, technical design report, DESY 2006–097, in Technical report (Deutsches Elektronen-Synchrotron, 2007)

    Google Scholar 

  139. A. Madsen, H. Sinn, Europe enters the extreme x-ray area. CERN Courier 57, 19–23 (2017)

    Google Scholar 

  140. H. Weise, W. Decking, The world’s longest superconducting linac. CERN Courier 57, 25–27 (2017)

    Google Scholar 

  141. T. Tschentscher, C. Bressler, J. Grünert, A. Madsen, A.P. Mancuso, M. Meyer, A. Scherz, H. Sinn, U. Zastrau, Photon beam transport and scientific instruments at the European XFEL. Appl. Sci. 7, 592 (2017)

    Google Scholar 

  142. A.I. Chumakov, A.Q.R. Baron, I. Sergueev, C. Strohm, O. Leupold, Y. Shvyd’ko, G.V. Smirnov, R. Rüffer, Y. Inubushi, M. Yabashi, K. Tono, T. Kudo, T. Ishikawa, Superradiance of an ensemble of nuclei excited by a free electron laser. Nature Phys. 14, 261–264 (2018)

    Google Scholar 

  143. D. Einfeld, M. Plesko, J. Schaper, A pure insertion device synchrotron light source utilizing the MBA-optics. J. Phys. IV France 04(C9), 373–376 (1994)

    Article  Google Scholar 

  144. D. Einfeld, M. Plesko, J. Schaper, First multi-bend achromat lattice consideration. J. Sync. Rad. 21, 661–856 (2014)

    Article  Google Scholar 

  145. ESRF Upgrade Programme Phase II (2015–2022), Technical Design Study, The Orange Book, December 2014

    Google Scholar 

  146. M. Eriksson, et al., Commissioning of the MAX IV light source, in Proc. IPAC 2016 (Busan, Korea, 2016)

    Google Scholar 

  147. S.M. Liuzzo, et al., Updates on lattice modeling and tuning for the ESRF-EBS lattice, in Proceedings IPAC 2016 (Busan, Korea, 2016), pp. 2818–2821

    Google Scholar 

  148. M. Borland, Preliminary expected performance characteristics of an APS multi-bend achromat lattice, white paper, in Technical Report ANL/APS/LS-337, Advanced Photon Source (2014)

    Google Scholar 

  149. C.G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-Y. Chae, H.-C. Chao, M. Eriksson, J. Keil, X. Nuel Gavaldà, R. Röhlsberger, O.H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, E. Weckert, The ultralow-emittance source project at DESY PETRA IV. J. Synch. Radiat. 25, 1277–1290 (2018)

    Google Scholar 

  150. K.-J. Kim, Yu.V. Shvyd’ko, Tunable optical cavity for an x-ray free-electron-laser oscillator. Phys. Rev. ST Accel. Beams 12, 030703 (2009)

    Google Scholar 

  151. R.R. Lindberg, K.-J. Kim, Yu. Shvyd’ko, W.M. Fawley, Performance of the x-ray free-electron laser oscillator with crystal cavity. Phys. Rev. ST Accel. Beams 14, 010701 (2011)

    Article  ADS  Google Scholar 

  152. Y. Shvyd’ko, V. Blank, S. Terentyev, Diamond x-ray optics: transparent, resilient, high-resolution, and wavefront preserving. MRS Bulletin 42, 437–444 (2017)

    Article  Google Scholar 

  153. K.P. Heeg, C.H. Keitel, J. Evers, Inducing and detecting collective population inversions of Mössbauer nuclei. arXiv:1607.04116 [quant-ph] (2016)

  154. B.L. Bax, G.E. Maciel Hawkins, N.M. Szeverenyi, Two-dimensional NMR spectroscopy, in Magnetic Resonance, ed. by L. Petrakis, J.P. Fraissard, vol. 124 of NATO ASI series (Springer, 1984)

    Google Scholar 

  155. M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, 2009)

    Google Scholar 

  156. S. Doniach, Fourth-generation X-ray sources: some possible applications to biology. J. Sync. Rad. 7, 116–120 (2000)

    Article  Google Scholar 

  157. L. von der Wense, B. Seiferle, M. Laatiaoui, J.B. Neumayr, H.J. Maier, H.-F. Wirth, C. Mokry, J. Runke, K. Eberhardt, C.E. Düllmann, N.G. Trautmann, Peter G. Thirolf, Direct detection of the \(^{229}\)Th nuclear clock transition. Nature 533, 47 (2016)

    ADS  Google Scholar 

  158. V.V. Flambaum, Variation of fundamental constants. AIP Conf. Proc. 869, 29–36 (2006)

    Article  ADS  Google Scholar 

  159. W.G. Rellergert, D. DeMille, R.R. Greco, M.P. Hehlen, J.R. Torgerson, E.R. Hudson, Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the \(^{229}\rm Th\) nucleus. Phys. Rev. Lett. 104, 200802 (2010)

    Google Scholar 

  160. W.-T. Liao, A. Pálffy, C.H. Keitel, Nuclear coherent population transfer with x-ray laser pulses. Phys. Lett. B 705, 134–138 (2011)

    Article  ADS  Google Scholar 

  161. W.-T. Liao, A. Pálffy, C.H. Keitel, Three-beam setup for coherently controlling nuclear-state population. Phys. Rev. C 87, 054609 (2013)

    Article  ADS  Google Scholar 

  162. T.J. Bürvenich, J. Evers, Christoph H. Keitel, Nuclear quantum optics with x-ray laser pulses. Phys. Rev. Lett. 96, 142501 (2006)

    Article  ADS  Google Scholar 

  163. J. Haber, J. Gollwitzer, S. Francoual, M. Tolkiehn, J. Strempfer, R. Röhlsberger, Spectral control of an x-ray \(L\)-edge transition via a thin-film cavity. Phys. Rev. Lett. 122, 123608 (2019)

    Google Scholar 

Download references

Acknowledgements

The results presented in this review would not have been possible without the eminent contributions of numerous coworkers and colleagues over the past ten years, We are gratefully indebted for their various contributions. Amongst those, there are few who we would like to mention in particular. First and foremost, this is Marlan O. Scully who, during the PQE conference in Snowbird in 2009, inspired our work on the collective Lamb shift, which was the initial spark that ignited the field of cavity-based nuclear quantum optics. It was then during the following years where the lively discussions with Bernhard Adams, Olga Kocharovskaya, Anatoly Svidzinsky and others, constituted a constant source of inspiration for the development of this field. In the following we would like to list—in alphabetical order—those colleagues who contributed in many ways to the development of the field, ranging from stimulating discussions to hands-on work in the laboratories and during the experiments at the synchrotron radiation sources ESRF and PETRA III: Hendrik Bernhardt, Lars Bocklage, Alexander I. Chumakov, Sebastien Couet, Frank-Uwe Dill, Jakob Gollwitzer, Tatyana Gurieva, Johann Haber, Kilian Heeg, Andreas Kaldun, Christoph H. Keitel, Dominik Lentrodt, Robert Loetzsch, Olaf Leupold, Berit Marx, Xiangjin Kong, Christian Ott, Adriana Palffy, Gerhard Paulus, Thomas Pfeifer, Sasha Poddubbny, André Rothkirch, Rudolf Rüffer, Balaram Sahoo, Kai Schlage, Kai-Sven Schulze, Daniel Schumacher, Cornelius Strohm, Ingo Uschmann, Hans-Christian Wille, and Svenja Willing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Röhlsberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Röhlsberger, R., Evers, J. (2021). Quantum Optical Phenomena in Nuclear Resonant Scattering. In: Yoshida, Y., Langouche, G. (eds) Modern Mössbauer Spectroscopy. Topics in Applied Physics, vol 137. Springer, Singapore. https://doi.org/10.1007/978-981-15-9422-9_3

Download citation

Publish with us

Policies and ethics