Skip to main content

Biological Overview and Adaptability Strategies of Tamarix Plants, T. articulata and T. gallica to Abiotic Stress

Abstract

Terrestrial plants are often found in extreme environmental conditions, such as water deficiency, unbalanced temperature, high salinity, and soil pollution. The study of plants under stress conditions can help to find a solution in the context of biodiversity conservation. Tamarix genus contains more than 85 species among them Tamarix articulata (aphylla, orientalis) and Tamarix gallica found under natural stresses. The two species represent a great ubiquity in the Algerian area whether under drought, soils salinity, calcareous soils, and polluted soils. They represent typical thermo-xerophytes plants. In order to studies the comportment of Tamarix articulata and Tamarix gallica in the stressed Algerian area we want to define in this chapter the biological strategies adapted by these two species under stresses areas morphologically, biochemically, and physiologically. Ions, heavy metals, and pollutants can be taken up by Tamarix species; this selective absorption strategy was detailed in addition to morphological strategies to counteract erosion and drought stresses. Moreover, chemicals compounds such as polyphenols produced by Tamarix itself as a response to abiotic stresses are examined. Moreover, the role of arbuscular mycorrhizal fungi as biological tools to alleviate abiotic stresses was underlined. These responses collectively determine different strategies to overcome abiotic stress and open the ways to exploit the genes responsible for resistance strategies and to transfer them into other agricultural plants to improve production in stressed areas.

Keywords

  • Abiotic stresses
  • Adaptive strategies response
  • Polyphenols
  • Reactive oxygen species
  • Catalase activity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-9380-2_14
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-9380-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6
Fig. 14.7
Fig. 14.8
Fig. 14.9
Fig. 14.10
Fig. 14.11
Fig. 14.12

References

  • Abbruzzese G, Kuzminsky E, Abou Jaoudé V, Angelaccio C, Eshel V, Scoppola A, Valentini R (2013) Leaf epidermis morphological differentiation between Tamarix africana Poir. and Tamarix gallica L. (Tamaricaceae) with ecological remarks. Plant Biosyst Int J Deal Aspects Plant Biol 147(3):573–582. https://doi.org/10.1080/11263504.2012.714805

    CrossRef  Google Scholar 

  • Alhourani N, Kasabri V, Bustanji Y, Abbassi R, Hudaib M (2018) Potential antiproliferative activity and evaluation of Essential oil composition of the aerial parts of Tamarix aphylla (L.) H. Karst.: a wild grown medicinal plant in Jordan. Evidence-Based Complementary and Alternative Medicine 2018:9363868, 7 pages and Industrial Research 57, 873–890 (1998)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Al-Mefarrej AH (2013) Growth characteristics and some wood quality of Tamarix aphylla seedlings irrigated with primary treated wastewater under drought stress. Asian J Plant Sci 12:109–118

    CrossRef  Google Scholar 

  • APG (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385

    CrossRef  Google Scholar 

  • Balsamo RA, Thomson WW (1996) Isolation of mesophylle and secretory cell protoplasts of the halophytes Ceratostigina Plumbaginoides (L): a comparison of ATPase concentration and activity. Plant Cell Reprod 15:418–422

    CAS  CrossRef  Google Scholar 

  • Baum BR (1978) The genus Tamarix. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Belhadj-Sgheir D, Pedro S, Duarte B, Caçador I, Seleimi N (2019) Arsenic tolerance mechanisms on halophytes the case of Tamarix gallica. In: Hasanuzaman et al. (ed.) Halophytes and climates changes adaptative mechanisms and potentials uses

    Google Scholar 

  • Bencherif K, Boutekrabt A, Fontaine J, Laruelle F, Dalpè Y, Lounès-Haj Sahraoui A (2016) Soil and seasons affect arbuscular mycorrhizal fungi associated with Tamarix rhizosphere in arid and semi-arid steppes. Appl Soil Ecol 107:182–190

    CrossRef  Google Scholar 

  • Bencherif K, Dalpé Y, Hadj-Sahraoui A (2019a) Arbuscular mycorrhizal fungi alleviate soil salinity stress in arid and semiarid areas. Soil Biol 56:375–400

    CAS  CrossRef  Google Scholar 

  • Bencherif K, Dalpé Y, Sahraoui A (2019b) Influence of native arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Tamarix shrubs under different salinity levels. Soil Biol 56:265–283

    CAS  CrossRef  Google Scholar 

  • Bencherif K, Djaballah Z, Brahimi F, Boutekrabt A, Dalpè Y, Lounès-Hadj Sahraoui A (2019c) Arbuscular mycorrhizal fungi affect total phenolic content and antimicrobial activity of Tamarix gallica in natural semi-arid Algerian areas. S Afr J Bot 125:39–45

    CAS  CrossRef  Google Scholar 

  • Benhouhou S (2018) A guide to medicinal plants in North Africa. UICNmed.org

    Google Scholar 

  • Berry WL (1970) Characteristics of salts secreted by Tamarix aphylla. Am J Bot 57:1226–1230

    CAS  CrossRef  Google Scholar 

  • Bettaib J, Talarmin H, Droguet M, Magné C, Boulaaba M, Giroux-metges M-A, Ksouri R (2017) Tamarix gallica phenolics protect IEC-6 cells against H 2 O 2 induced stress by restricting oxidative injuries and MAPKs signaling pathways. Biomed Pharmacother 89:490–498. https://doi.org/10.1016/j.biopha.2017.02.047

    CAS  CrossRef  PubMed  Google Scholar 

  • Bill HC et al (1997) The distribution and patch dynamics of the German tamarisk Myricaria germanica (L) Desv, in the upper river Isar, Bavaria. Zeitschrift fur Okologie und Naturschutz 6(3):137–150

    Google Scholar 

  • BNEDER (2015) Bulletin d’information trimestriel N°6. Etude de rehabilitation de la plaine d’Abadla, Béchar

    Google Scholar 

  • Bosabalidis AM (1992) A morphological approach to the question of salt gland lifetime in leaves of Tamarix aphylla L. Israel J Plant Sci 41(3):115–121. https://doi.org/10.1080/0021213X.1992.10677220

    CrossRef  Google Scholar 

  • Bosabalidis AM (2010) Wall protuberance formation and function in secreting salt gland of Tamarix aphylla L. Acta Bot Coatica 69:229–235

    Google Scholar 

  • Bosabalidis AM, Thomson WW (1986) Light Microscopical studies on salt gland development in Tamarix aphylla L. Ann Bot 54(2):169–174. https://doi.org/10.1093/oxfordjournals.aob.a086780

    CrossRef  Google Scholar 

  • Boulaaba M, Tsolmon S, Ksouri R, Han J, Kawada K, Smaoui A, Abdelly C, Isoda H (2013) Anticancer effect of Tamarix gallica extracts on human colon cancer cells involves Erk1/2 and p38 action on G2/M cell cycle arrest. Cytotechnology 65:927–936

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Boulaaba M, Snoussi M, Saada M, Mkadmini K, Smaoui A, Abdelly C, Ksouri R (2015) Antimicrobial activities and phytochemical analysis of Tamarix gallica extracts. Ind Crop Prod 76:1114–1122. https://doi.org/10.1016/j.indcrop.2015.08.020

    CAS  CrossRef  Google Scholar 

  • Braun-Blanquet J, de Bolòs O (1958) Les groupements végétaux du bassin moyen de l’Ebre et leur dynamisme. Anales Est Exp Aula Dei 5(1–4):1–266

    Google Scholar 

  • Brotherson JD, Field D (1987) Tamarix: impacts of a successful weed. Rangelands 9:110–112

    Google Scholar 

  • Brown G, Mies B (2012) Vegetation ecology of Socotra. Springer, Berlin, pp 105–106

    CrossRef  Google Scholar 

  • Bulos L (1983) Medicinal plant of North Africa, Michigan

    Google Scholar 

  • Battandier MA (1907) Revision des Tamarix algériens et description de deux espèces nouvelles, Bulletin de la Société Botanique de France, 54:5, 252-257, DOI: 10.1080/00378941.1907.10831266

    Google Scholar 

  • Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C, Lei C, Gong M (2019) The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum Tuberosum). Genes 10:148. https://doi.org/10.3390/genes10020148

    CAS  CrossRef  PubMed Central  Google Scholar 

  • Christenhusz MJM, Bung JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 3:201–2017. https://doi.org/10.11646/phytotaxa.261.3.1

    CrossRef  Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena – La Unión mining district (SE Spain). Sci Total Environ 366:1–11

    CAS  PubMed  CrossRef  Google Scholar 

  • Dassanayake M and Larkin JC (2017) Making Plants Break a Sweat: the Structure, Function, and Evolution of Plant Salt Glands. Front. Plant Sci. 8:406. doi: 10.3389/fpls.2017.00406

    Google Scholar 

  • DGF (2017) Rapport d’activité de la Direction général des forêts, Evaluation des projets de plantations dans la steppe sud algéroise

    Google Scholar 

  • Dreesen DR, Wangen LE (1981) Elemental composition of saltcedar (Tamarix chinensis) impacted by effluents from a coal-fired power plant. J Environ Qual 10:410–416

    CAS  CrossRef  Google Scholar 

  • Durate B, santos D, Marquez JC, Caçador I (2013) Ecophysiological adaptation of two halophytes to salt stress photosynthesis PSII photochemistry and antioxidant feedback: implication of resilience in climates changes. Plant Physiol Biochem 67:178–188

    CrossRef  CAS  Google Scholar 

  • El Hindi MK, Sharaf El-Din A, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24:170–179

    CrossRef  CAS  Google Scholar 

  • Fellah O, Hameurlaine S, Gherraf N, Zellagui A, Ali T, Abidi A, Altun M. Demirtas I, Yaglioglu AS (2018) Anti-proliferative activity of ethyl acetate extracts of Tamarix gallica L. grown at different climatic conditions in Algeria. Acta Sci Nat 5(2):23–31

    CAS  Google Scholar 

  • Ferlin GR (1981) Techniques de reboisement dans les zones désertiques d’Afrique. Centre de Recherches Pour le Développement International, Ottawa, p 46

    Google Scholar 

  • Fevreau B (2012) Impact du stress hydrique sur l’anatomie et la teneur en polyphénols des feuilles de 2 génotypes d’Eucalyptus au champ. Mémoire de Master en Biologie fonctionnelle des plantes. Université Montpellier 2. 44 p

    Google Scholar 

  • Gao C, Liu Y, Wang C, Zhang K, Wang Y (2014) Expression profiles of 12 late embryogenesis abundant protein genes from Tamarix hispida in response to abiotic stress. Sci World J:9. https://doi.org/10.1155/2014/868391

  • Garg N, Singh S (2018) Arbuscular Mycorrhiza Rhizophagus irregularis and silicon modulate growth, Proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37:46–63

    CAS  CrossRef  Google Scholar 

  • Garg N, Singla P (2015) Naringenin- and Funneliformis mosseae-mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in Cicer arietinum L. genotypes under salt stress. J Plant Growth Regul 34:595–610. https://doi.org/10.1007/s00344-015-9494-9

    CAS  CrossRef  Google Scholar 

  • Gaston B (1998) La grande flore en couleurs, 1st ed. Belgique et pays voisins, France, Suisse, pp 373

    Google Scholar 

  • Ghazanfar SA (1994) Handbook of Arabian medicinal plants. CRC Press, Boca Roton, p 203

    CrossRef  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH et al (2007) Cd induced growth reduction in the halophytes Sesuvium portula castrum is significantly improved by NaCl. J Plant Res 120:309–316

    CAS  PubMed  CrossRef  Google Scholar 

  • Guallar MB (2019) Understanding how metabolism can make or break a plant's ability to adapt to extreme conditions: the Tamarix case study in the Negev. Université de Leida

    Google Scholar 

  • Hadj Allal FZ (2014) Contribution à l'étude du genre Tamarix: aspects botanique et Phytoécologique dans la région de Tlemcen. Mémoire de magistère. Université de Tlemcen, 170 p

    Google Scholar 

  • Han Z, Yin W, Zhang J, Niu S, Ren L (2013) Active anti-erosion protection strategy in tamarisk (Tamarix aphylla). Sci Rep 3:3429. https://doi.org/10.1038/srep03429

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi A, Al-Huqail ESD (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of acacia gerrardii under salt stress. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01089

  • Hassaine C, Aboura R, Merzouk A, Benmansour D (2014) Study of Halophytes dispersion in the North-West region of Algeria. Open J Ecol 4:628–640

    CrossRef  Google Scholar 

  • Hatano T, Kagawa H, Yasohara T, Okuda T (1988) Two new flavonoids and other constituents in licorice roots: their relative astringency and radical scavenging effect. Chem Pharm Bull 36:337–341

    Google Scholar 

  • Hopkins WG (2003) Physiologie végétale. Traduction de la 2ème édition américaine par SERGE R. Ed. De Boeck, pp 66–81

    Google Scholar 

  • Horton JL, Clark JL (2001) Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. For Ecol Manag 140(2–3):239–247. https://doi.org/10.1155/2018/9363868

    CrossRef  Google Scholar 

  • INRF (1984) Institut National de Recherche Forestière. Rapport d’activité. Semestre 1. Ministère de l’Agriculture

    Google Scholar 

  • Jaseim TM, Nasser NM, Al-Bazaz HK (2019) Tamarix aphylla L.: a review. Res J Pharm Tech 12(7)

    Google Scholar 

  • Kaabech M, Benkheira A (2000) Guide des habitats arides et sahariens. Typologie phytosociologique de la vegetation d’algérie. DGF. PNUD. FEM

    Google Scholar 

  • Kadukova J, Kalogerakis N (2007) Lead accumulation from non-saline and saline environment by Tamarixsmyrensis Bunge. Eur J Soil Biol 43:216–223

    CAS  CrossRef  Google Scholar 

  • Khabtane A, Rahmoun C (2012) Effet du biotope sur la diversité floristique et le polymorphisme phénotypique des groupements à Tamarix africana Poir., dans les zones arides de la région de Khenchela (Est Algerien). J Agric Environ Int Dev 106(2):123–137

    Google Scholar 

  • Khachkhouch E, Zeid A, Khezzani B, Guehef ZH (2020) Study of the floristic composition of a wetland (Chott Edhiba) in the Souf region (northern sahara, Algeria). Int J Sci Res 76. https://doi.org/10.21506/j.ponte.2020.3.16

  • Kobayachi H, Massaoka Y, Takahashi Y (2007) Ability of salt glands in Rhodes grass (Chloris gayana Kunth) to secrete Na+ and K+. Soil Sci Plant Nut 53:764–771

    CrossRef  CAS  Google Scholar 

  • Koull N, Chehma A (2014) Soil-vegetation relationships of saline wetlands in north east of Algerian Sahara. Arid Land Res Manag 29(1):72–84. https://doi.org/10.1080/15324982.2014.898346

    CrossRef  Google Scholar 

  • Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091

    CAS  PubMed  CrossRef  Google Scholar 

  • Kumar N, Lamba S, Kumar A, Kumar P, Mann A, Devi S, Kumari PA, Rani B (2019) Antioxident defencse in halophytes under high salinity. In: Hasanuzaman et al. (ed.) Halophytes and climates changes adaptative mechanisms and potentials uses

    Google Scholar 

  • Kuzminsky E, De Angelis P, Abou Jaoudé R et al (2014) Biodiversity of Italian Tamarix spp. populations: their potential as environmental and productive resources. Rend Fis Acc Lincei 25:439–452. https://doi.org/10.1007/s12210-014-0309-x

    CrossRef  Google Scholar 

  • Lavaine C, Evette A, Piégay H, Brahic P (2011a) ‘Génie végétal contre l’érosion des berges de cours d’eau dans un contexte de changement climatique: quelles nouvelles espèces utiliser?’ 1ères Rencontres Interdisciplinaires Doctorales de l'Aménagement Durable (RIDAD 2011)

    Google Scholar 

  • Lavaine C, Evette A, Piégay H, Lachat B, Brahic P (2011b) Les Tamaricaceae en génie végétal. Sciences eaux et territoires. https://doi.org/10.14758/SET-REVUE.2011.HS.04

    CrossRef  Google Scholar 

  • Lebreton P, Bouchez M-P (1967) Recherches chimiotaxinomiques sur les plantes vasculaires — V. Phytochemistry 6:1601–1608

    CAS  CrossRef  Google Scholar 

  • Lefevre I, Marchal G, Meerts P, Correal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65(1):142–152

    CAS  CrossRef  Google Scholar 

  • Li J, Yu B, Zhao C, Nowak RS, Zhao Z, Sheng Y, Li J (2013) Physiological and morphological responses of tamarix ramosissima and populus euphratica to altered groundwater availability. Tree Physiol 33:57–68

    CAS  PubMed  CrossRef  Google Scholar 

  • Litwak M (1957) The influence of T. aphylla on soil composition in the northern Negev of Israel. Bull Resour Council Israel 6D:38–45

    CAS  Google Scholar 

  • Ma HY, Tian CY, Feng G et al (2011) Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively. Sci China Life Sci 54:282–289. https://doi.org/10.1007/s11427-011-4145-2

    CAS  CrossRef  PubMed  Google Scholar 

  • Ma D, Sun D, Wang C, Ding H, Qin H, Hou J, Huang X, Xie Y, Guo T (2017) Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Plant Sci 8:860. https://doi.org/10.3389/fpls.2017.00860

    CrossRef  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16(7):844–854

    CAS  CrossRef  Google Scholar 

  • Marius NG, Toma C (2017) Anatomical adaptation of halophytes. Springer, Berlin

    Google Scholar 

  • Marlin D, Newete SW, Mayonde SG, Smit ER, Bayrne MJ (2017) Invasive Tamarix (Tamaricaceae) in South Africa: current research and the potential for biological control. Biol Invasions 19:2971–2992. https://doi.org/10.1007/s10530-017-1501-6

    CrossRef  Google Scholar 

  • Mauseth JD (1988) Plant anatomy. Benjamin Cumming, Menlo Park, p 560

    Google Scholar 

  • Meinhardt KA, Gehring CA (2013) Tamarix and soil ecology. Oxford University Press

    Google Scholar 

  • Muller N (1995) River dynamics and floodplain vegetation and their alterations due to human impact. Arch Hydrobiol Suppl 101:477–512

    Google Scholar 

  • Nawwar MAM, Buddrus J, Bauer H (1982) Dimeric phenolic constituents from the roots of Tamarix nilotica. Phytochemistry 21:1755–1758

    CAS  CrossRef  Google Scholar 

  • Nedjimi B, Beladel B, Guit B (2012) Biodiversity of halophytic vegetation in Chott Zehrez Lake of Djelfa (Algeria). Am J Plant Sci 3:1527–1534. https://doi.org/10.4236/ajps.2012.311184

    CrossRef  Google Scholar 

  • Newet, S.W., Allem, S.M., Venter, N., Byrne, M.J. 2018. The efficiency of Tamarix genotypes in salt excretion in South Africa. In: The 15th international phytotechnology conference. University of Novi Sad Serbia. 1–5 October

    Google Scholar 

  • Newete SW, Allem SM, Venter N, Byrne MJ (2020) Tamarix efficiency in salt excretion and physiological tolerance to salt-induced stress in South Africa. Int J Phytoremediation 22(1):3–9. https://doi.org/10.1080/15226514.2019.1633997

    CAS  CrossRef  PubMed  Google Scholar 

  • Quezel P, Santa S (1963) Nouvelle flore de l’Algérie et des régions désertiques méridionales. CNRS, Paris, 1170 p

    Google Scholar 

  • Rancic D, Pecinar I, Acic S, Stevanovic ZD (2019) Morpho-anatomic traits of halophytes species. In: Hasanuzaman et al. (ed) Hallophytes and climates changes adaptatives mechanisms and potentials uses

    Google Scholar 

  • Rozema J, Gude H (1981) An ecophysiological study of salt secretion of four halophytes. New Phytol 89:201–2017

    CAS  CrossRef  Google Scholar 

  • Saïdana D, Mahjoub MA, Boussaada O, Chriaa J, Chéraif I, Daami M, Mighri Z, Helal AN (2008) Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiol Res 163:445–455

    PubMed  CrossRef  CAS  Google Scholar 

  • Saoud Orfali R (2005) Phytochemical and biological study of Tamarix nilotica growing in Saudi Arabia. Master’s degree report, B.Sc. Pharm, King Saud University

    Google Scholar 

  • Sellosse MA (2017) Jamais seul. Ces microbes qui construisent les plantes, les animaux et les civilisations Ed ACTES SUD

    Google Scholar 

  • Sghaier DB, Duarte B, Bankaji I, Caçador I, Sleimi N (2015) Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: arsenic and NaCl. J Photochem Photobiol Biol 149:204–214. https://doi.org/10.1016/j.jphotobiol.2015.06.003

    CAS  CrossRef  Google Scholar 

  • Sharma SK, Parmar VS (1998) Novel constitutes of Tamarix species. J Sci

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press

    Google Scholar 

  • Smith SD et al (1998) Water relations of riparian plants from warm desert regions. Wetlands 18(4):687–696

    CrossRef  Google Scholar 

  • Sookbirsingh R, Castillo K, Gill TE, Chianelli RR (2010) Salt separation process in the saltcedar Tamarix ramosissima (Ledeb.). Commun Soil Sci Plant Anal 41:1271–1281

    CAS  CrossRef  Google Scholar 

  • Sorensen MA, Parker DR, Trumble JT (2009) Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabdaelongata (Coleoptera: Chrysomelidae). Environ Pollut 157:384–391

    CAS  PubMed  CrossRef  Google Scholar 

  • Stefani F, Bencherif K, Sabourin S, Lounès Hadj-Sahraoui A, Banchini C, Séguin S, Dalpé Y (2020) Taxonomic assignment of arbuscular mycorrhizal fungi in an 18S metagenomic dataset: a case study with saltcedar (Tamarix aphylla). Mycorrhiza. https://doi.org/10.1007/s00572-020-00946-y

  • Sultanova N, Makhmoor T, Abilov ZA, Parwee Z, Omurkamzinova VB, Atta-ur-Rahman MIC (2001) Antioxidant and antimicrobial activities of Tamarix ramosissima. J Ethnopharmacol 78:201–205

    CAS  PubMed  CrossRef  Google Scholar 

  • Surowka E, Latowski D, Libik-Konieczny, Miszalski Z (2019) ROS signaling and antioxidant defense network in halophytes. In: Hasanuzaman et al (ed) Hallophytes and climates changes adaptatives mechanisms and potentials uses

    Google Scholar 

  • Swaminathan P, Ohrtman M, Carinder A, Deuja A, Wang C, Gaskin J, Fennell A, Clay S (2020) Water deficit transcriptomic responses dier in the invasive Tamarix chinensis and T. ramosissima established in the Southern and Northern United States. Plants 9:86. https://doi.org/10.3390/plants9010086

    CAS  CrossRef  PubMed Central  Google Scholar 

  • Thomson WW, Liu LL (1967) Ultra structural feature of the salt gland of Tamarix aphylla L. Planta 73:201–220

    CAS  PubMed  CrossRef  Google Scholar 

  • Urbansky ET, Magnuson ML, Kelty CA, Brown SK (2000) Perchlorate uptake by salt cedar (Tamarix ramosissima) in the Las Vegas wash riparian ecosystem. Sci Total Environ 256:227–232

    CAS  PubMed  CrossRef  Google Scholar 

  • Waisel Y (1961) Ecological studies on Tamarix aphylla (L.) Karst., III. The salt economy. Plant Soil 13:356–364

    CAS  CrossRef  Google Scholar 

  • Wang J, Xu M, Gu Y, Xu LA (2016) Differentially expressed gene analysis of Tamarix chinensis provides insights into NaCl-stress response. In: Trees. Springer, Berlin

    Google Scholar 

  • Willdenow K (1816) Beschreibung der Gattung Tamarix. Abh Akad Berlin Phys 1812–1813:76–85

    Google Scholar 

  • Zhang DY, Yin LK, Pan BR (2002) Biological and ecological characteristics of Tamarix L. and its effect on the ecological environment. Sci China Ser D-Earth Sci 45:18–22

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bencherif, K., Trodi, F., Hamidi, M., Dalpè, Y., Hadj-Sahraoui, A.L. (2020). Biological Overview and Adaptability Strategies of Tamarix Plants, T. articulata and T. gallica to Abiotic Stress. In: Giri, B., Sharma, M.P. (eds) Plant Stress Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9380-2_14

Download citation