Skip to main content

A Decentralized Access Control Model for IoT with DID

  • Conference paper
  • First Online:
IT Convergence and Security

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 712))

Abstract

IoT has put a great impact on modern society and every industry, but there are still several technical issues to be resolved in realizing the vision of IoT. From these issues, Access Control (AC) is essential to make an IoT service successful because, in the IoT environment, people with different privileges will access the devices from multiple manufacturers under diverse situations. However, the existing centralized AC models have the underlying limitations from the centralized approach such as a single point of failure. The research proposes a decentralized access control model for IoT with Decentralized ID (DID) and explains how the proposed model authorizes access rights successfully without a centralized authority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Da Xu L, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Ind Inform 10(4):2233–2243

    Article  Google Scholar 

  2. Li S, Da Xu L, Zhao S (2015) The internet of things: a survey. Inform Syst Front 17(2):243–259

    Article  Google Scholar 

  3. Liu J, Xiao Y, Chen CP (2012) Authentication and access control in the internet of things. In: 32nd International Conference on Distributed Computing Systems Workshops. IEEE, pp 588–592

    Google Scholar 

  4. Ronald F (1978) On an authorization mechanism. ACM Trans Database Syst 3(3):310–319

    Article  Google Scholar 

  5. Gusmeroli S, Piccione S, Rotondi D (2013) A capability-based security approach to manage access control in the internet of things. Math Comput Model 58(5–6):1189–1205

    Article  Google Scholar 

  6. Ouaddah A, Mousannif H, Elkalam AA, Ouahman AA (2017) Access control in the Internet of Things: Big challenges and new opportunities. Comput Netw 112:237–262

    Article  Google Scholar 

  7. Bertin E, Hussein D, Sengul C, Frey V (2019) Access control in the Internet of Things: a survey of existing approaches and open research questions. Ann Telecommun 74(7–8):375–388

    Article  Google Scholar 

  8. Drummond R, Manu S, Dave L, Christopher A, Ryan G, Markus S (2019) Decentralized identifiers (DIDs) v1.0 cord data model and syntaxes. W3C Working Draft 09 December 2019. https://www.w3.org/TR/did-core/. Last accessed 10 Feb 2020

  9. Christopher A, Arthur B, Vitalik B, Jon C, Duke D, Christian L, Pavel K, Jude N, Drummond R, Markus S, Greg S, Noah T, Harlan TW (2015) Decentralized public key infrastructure. A White Paper from Rebooting the Web of Trust

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07049930). Icons are made by Freepik from www.flaticon.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euihyun Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, E. (2021). A Decentralized Access Control Model for IoT with DID. In: Kim, H., Kim, K.J. (eds) IT Convergence and Security. Lecture Notes in Electrical Engineering, vol 712. Springer, Singapore. https://doi.org/10.1007/978-981-15-9354-3_14

Download citation

Publish with us

Policies and ethics