Skip to main content

Vision-Based Diagnosis and Location of Insulator Self-Explosion Defects

  • Conference paper
  • First Online:
IT Convergence and Security

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 712))

Abstract

Aiming at the insulator image of transmission line acquired by UAV, a vision-based insulator self-explosion defect detection and location method was proposed. First, superpixel segmentation is performed on the insulator image based on local texture features, and the saliency map of the insulator string is obtained by using the color feature different saliency and multi-scale optimization. Then, the salient image is binarized and morphologically processed to obtain a binary image. Finally, vertical projection Method to identify and identify the location of insulator defects. The experimental results show that the method can accurately identify the fault point of insulator strings. By comparing with two commonly used insulator self-explosion fault detection methods, the validity and reliability of the proposed method are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhining L (2020) Overview of common fault analysis and detection methods for transmission lines. Autom Instrum 35(01):161–164

    Google Scholar 

  2. Zhen B, Liu Z (2014) The recognition and localization of insulators adopting SURF and IFS based on correlation coefficient. Optik 125(20):6049–6052

    Article  Google Scholar 

  3. You C (2019) Insulator fault detection method based on catenary imaging technology. Mod Urban Rail Transit 156(10):5–10

    Google Scholar 

  4. Pan Z, Zhang X, Yang Y et al (2020) Application of weakly supervised fine-grained classification in insulator fault identification. J Shanxi Univ 18(01):86–95 (Natural Science Edition)

    Google Scholar 

  5. Zhang G, Liu Z, Han Ye (2016) Automatic recognition for catenary insulators of high-speed railway based on contourlet transform and Chan-Vese model. Optik 127(01):215–221

    Article  Google Scholar 

  6. da Silva PR, Gabbar HA, Junior PV et al (2018) A new methodology for multiple incipient fault diagnosis in transmission lines using QTA and Naïve Bayes classifier. IntJ Electr Power Energy Syst 103(12), 159–165

    Google Scholar 

  7. Zhai Y, Wang Di, Zhao Z et al (2019) Insulator string localization method based on spatial morphology consistency feature [J]. Trans China Electr Eng 37(05):1568–1578

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, W., Gu, Z., Song, R., Li, Y. (2021). Vision-Based Diagnosis and Location of Insulator Self-Explosion Defects. In: Kim, H., Kim, K.J. (eds) IT Convergence and Security. Lecture Notes in Electrical Engineering, vol 712. Springer, Singapore. https://doi.org/10.1007/978-981-15-9354-3_13

Download citation

Publish with us

Policies and ethics