Skip to main content

Nutrition and Diet Therapy for DKD

  • Chapter
  • First Online:
Diabetic Kidney Disease
  • 588 Accesses

Abstract

Prevention and treatment of chronic kidney disease in diabetes (diabetic kidney disease [DKD]) with lifestyle intervention, including diet therapy, have been a focus of interest in research. Consideration of the amount of energy intake by carbohydrates and lipids and the amount of protein and salt intake is required for managing body weight, maintaining optimal blood glucose levels, and preventing diabetes-related vascular complications, including DKD. However, the clinical significance of protein restriction and the ideal recommended intake in view of its benefits and risks are controversial. Furthermore, the severity of DKD with which to implement dietary changes should also be considered. This section seeks to provide guidance regarding nutritional management of DKD and discusses the remaining clinical issues in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitham D. Nutrition for the prevention and treatment of chronic kidney disease in diabetes. Can J Diabetes. 2014;38(5):344–8.

    Article  PubMed  Google Scholar 

  2. Look ARG, Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83.

    Article  Google Scholar 

  3. Morales E, Valero MA, Leon M, Hernandez E, Praga M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis. 2003;41(2):319–27.

    Article  PubMed  Google Scholar 

  4. Halbesma N, Bakker SJ, Jansen DF, Stolk RP, De Zeeuw D, De Jong PE, et al. High protein intake associates with cardiovascular events but not with loss of renal function. J Am Soc Nephrol. 2009;20(8):1797–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walrand S, Short KR, Bigelow ML, Sweatt AJ, Hutson SM, Nair KS. Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab. 2008;295(4):E921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uzu T, Nakao K, Kume S, Araki H, Isshiki K, Araki S, et al. High sodium intake is associated with masked hypertension in Japanese patients with type 2 diabetes and treated hypertension. Am J Hypertens. 2012;25(11):1170–4.

    Article  CAS  PubMed  Google Scholar 

  7. Kanauchi N, Ookawara S, Ito K, Mogi S, Yoshida I, Kakei M, et al. Factors affecting the progression of renal dysfunction and the importance of salt restriction in patients with type 2 diabetic kidney disease. Clin Exp Nephrol. 2015;19(6):1120–6.

    Article  CAS  PubMed  Google Scholar 

  8. Parvanova A, Trillini M, Podesta MA, Iliev IP, Ruggiero B, Abbate M, et al. Moderate salt restriction with or without paricalcitol in type 2 diabetes and losartan-resistant macroalbuminuria (PROCEED): a randomised, double-blind, placebo-controlled, crossover trial. Lancet Diabetes Endocrinol. 2018;6(1):27–40.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane review). Am J Hypertens. 2011;24(8):843–53.

    Article  CAS  PubMed  Google Scholar 

  10. Araki S, Haneda M, Koya D, Kondo K, Tanaka S, Arima H, et al. Urinary potassium excretion and renal and cardiovascular complications in patients with type 2 diabetes and normal renal function. Clin J Am Soc Nephrol. 2015;10(12):2152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hansen HP, Tauber-Lassen E, Jensen BR, Parving HH. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002;62(1):220–8.

    Article  PubMed  Google Scholar 

  12. Koya D, Haneda M, Inomata S, Suzuki Y, Suzuki D, Makino H, et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomised controlled trial. Diabetologia. 2009;52(10):2037–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nezu U, Kamiyama H, Kondo Y, Sakuma M, Morimoto T, Ueda S. Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomised controlled trials. BMJ Open. 2013;3(5):e002934.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pan Y, Guo LL, Jin HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88(3):660–6.

    Article  CAS  PubMed  Google Scholar 

  15. Ideura T, Shimazui M, Morita H, Yoshimura A. Protein intake of more than 0.5 g/kg BW/day is not effective in suppressing the progression of chronic renal failure. Contrib Nephrol. 2007;155:40–9.

    Article  CAS  PubMed  Google Scholar 

  16. Pupim LB, Cuppari L, Ikizler TA. Nutrition and metabolism in kidney disease. Semin Nephrol. 2006;26(2):134–57.

    Article  CAS  PubMed  Google Scholar 

  17. Stenvinkel P, Heimburger O, Paultre F, Diczfalusy U, Wang T, Berglund L, et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55(5):1899–911.

    Article  CAS  PubMed  Google Scholar 

  18. Da J, Xie X, Wolf M, Disthabanchong S, Wang J, Zha Y, et al. Serum phosphorus and progression of CKD and mortality: a meta-analysis of cohort studies. Am J Kidney Dis. 2015;66(2):258–65.

    Article  CAS  PubMed  Google Scholar 

  19. Bjornstad P, Lanaspa MA, Ishimoto T, Kosugi T, Kume S, Jalal D, et al. Fructose and uric acid in diabetic nephropathy. Diabetologia. 2015;58(9):1993–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ficociello LH, Rosolowsky ET, Niewczas MA, Maselli NJ, Weinberg JM, Aschengrau A, et al. High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: results of a 6-year follow-up. Diabetes Care. 2010;33(6):1337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jalal DI, Rivard CJ, Johnson RJ, Maahs DM, McFann K, Rewers M, et al. Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the Coronary Artery Calcification in Type 1 Diabetes study. Nephrol Dial Transplant. 2010;25(6):1865–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stirpe F, Della Corte E, Bonetti E, Abbondanza A, Abbati A, De Stefano F. Fructose-induced hyperuricaemia. Lancet. 1970;2(7686):1310–1.

    Article  CAS  PubMed  Google Scholar 

  23. Cox CL, Stanhope KL, Schwarz JM, Graham JL, Hatcher B, Griffen SC, et al. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutr Metab (Lond). 2012;9(1):68.

    Article  CAS  Google Scholar 

  24. Choi JW, Ford ES, Gao X, Choi HK. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008;59(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro H, Theilla M, Attal-Singer J, Singer P. Effects of polyunsaturated fatty acid consumption in diabetic nephropathy. Nat Rev Nephrol. 2011;7(2):110–21.

    Article  CAS  PubMed  Google Scholar 

  26. Rebholz CM, Crews DC, Grams ME, Steffen LM, Levey AS, Miller ER 3rd, et al. DASH (dietary approaches to stop hypertension) diet and risk of subsequent kidney disease. Am J Kidney Dis. 2016;68(6):853–61.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Haring B, Selvin E, Liang M, Coresh J, Grams ME, Petruski-Ivleva N, et al. dietary protein sources and risk for incident chronic kidney disease: results from the Atherosclerosis Risk in Communities (ARIC) study. J Ren Nutr. 2017;27(4):233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lew QJ, Jafar TH, Koh HW, Jin A, Chow KY, Yuan JM, et al. Red meat intake and risk of ESRD. J Am Soc Nephrol. 2017;28(1):304–12.

    Article  PubMed  Google Scholar 

  29. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA. 2016;316(6):602–10.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martinez-Maldonado M, Benabe JE, Wilcox JN, Wang S, Luo C. Renal renin, angiotensinogen, and ANG I-converting-enzyme gene expression: influence of dietary protein. Am J Phys. 1993;264(6 Pt 2):F981–8.

    CAS  Google Scholar 

  32. Benabe JE, Fernandez-Repollet E, Tapia E, Luo C, Martinez-Maldonado M. Angiotensin II and catecholamines interaction in short-term low protein feeding. Kidney Int. 1993;44(2):285–93.

    Article  CAS  PubMed  Google Scholar 

  33. Benabe JE, Wang S, Wilcox JN, Martinez-Maldonado M. Modulation of ANG II receptor and its mRNA in normal rat by low-protein feeding. Am J Phys. 1993;265(5 Pt 2):F660–9.

    CAS  Google Scholar 

  34. Peters H, Border WA, Noble NA. Angiotensin II blockade and low-protein diet produce additive therapeutic effects in experimental glomerulonephritis. Kidney Int. 2000;57(4):1493–501.

    Article  CAS  PubMed  Google Scholar 

  35. Gonska T, Hirsch JR, Schlatter E. Amino acid transport in the renal proximal tubule. Amino Acids. 2000;19(2):395–407.

    Article  CAS  PubMed  Google Scholar 

  36. Sallstrom J, Carlstrom M, Olerud J, Fredholm BB, Kouzmine M, Sandler S, et al. High-protein-induced glomerular hyperfiltration is independent of the tubuloglomerular feedback mechanism and nitric oxide synthases. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1263–8.

    Article  PubMed  CAS  Google Scholar 

  37. Lau C, Sudbury I, Thomson M, Howard PL, Magil AB, Cupples WA. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):R1761–70.

    Article  CAS  PubMed  Google Scholar 

  38. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  CAS  PubMed  Google Scholar 

  39. Sigrist MK, Taal MW, Bungay P, McIntyre CW. Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin J Am Soc Nephrol. 2007;2(6):1241–8.

    Article  CAS  PubMed  Google Scholar 

  40. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83(6):1159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes. 2012;61(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  42. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121(6):2181–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamahara K, Kume S, Koya D, Tanaka Y, Morita Y, Chin-Kanasaki M, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol. 2013;24(11):1769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao J, Miyamoto S, You YH, Sharma K. AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys. Am J Physiol Renal Physiol. 2015;308(10):F1167–77.

    Article  CAS  PubMed  Google Scholar 

  45. Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. 2013;19(11):1496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kitada M, Ogura Y, Suzuki T, Sen S, Lee SM, Kanasaki K, et al. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia. 2016;59(6):1307–17.

    Article  CAS  PubMed  Google Scholar 

  47. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010;120(4):1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 2016;65(3):755–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Kume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kume, S. (2021). Nutrition and Diet Therapy for DKD. In: Wada, T., Furuichi, K., Kashihara, N. (eds) Diabetic Kidney Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-9301-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9301-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9300-0

  • Online ISBN: 978-981-15-9301-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics