Skip to main content

Experimental Animal Models of Diabetic Kidney Disease

  • Chapter
  • First Online:
Diabetic Kidney Disease
  • 584 Accesses

Abstract

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD) worldwide. In order to understand the mechanisms of onset and progression of diabetic nephropathy (DN) and development of effective therapies for human DKD, animal models that reflect human DKD should be established.

Rodents including rats and mice are useful animals for research due to the handling, experimental costs, maintenance of the number of animals, and simplification of the experimental conditions. Despite many studies have been performed using diabetic rodent models, no animal models completely mimic the physiological and pathological features of human DN and have not been established, and this may lead to the delay of the study about DKD. Currently, several rodent models of type 1 and type 2 diabetes mellitus (DM) have been available for the study of DKD. However, each animal model has their own physiological and pathological characteristics of DN in type 1 and type 2 DM.

The purpose of this section is to outline the pathological features of the major DN rodent models that have been reported thus far and to evaluate the utility and limitations of these animal models for research on DKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton). 2007;12(3):261–6. https://doi.org/10.1111/j.1440-1797.2007.00796.x.

    Article  Google Scholar 

  2. Kitada M, Ogura Y, Koya D. Rodent models of diabetic nephropathy: their utility and limitations. Int J Nephrol Renovasc Dis. 2016;9:279–90. https://doi.org/10.2147/IJNRD.S103784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mise K, Yamaguchi Y, Hoshino J, Ueno T, Sekine A, Sumida K, et al. Paratubular basement membrane insudative lesions predict renal prognosis in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. PLoS One. 2017;12(8):e0183190. https://doi.org/10.1371/journal.pone.0183190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63. https://doi.org/10.1681/ASN.2010010010.

    Article  PubMed  Google Scholar 

  5. Furuichi K, Yuzawa Y, Shimizu M, Hara A, Toyama T, Kitamura H, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant. 2018;33(1):138–48. https://doi.org/10.1093/ndt/gfw417.

    Article  CAS  PubMed  Google Scholar 

  6. Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med. 2015;6(3):120–7.

    PubMed  PubMed Central  Google Scholar 

  7. Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P, Mundel P, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest. 2001;108(6):807–16. https://doi.org/10.1172/JCI12367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakamura T, Ushiyama C, Suzuki S, Hara M, Shimada N, Ebihara I, et al. Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transplant. 2000;15(9):1379–83.

    Article  CAS  PubMed  Google Scholar 

  9. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55(1):225–33.

    Article  CAS  PubMed  Google Scholar 

  10. An Y, Xu F, Le W, Ge Y, Zhou M, Chen H, et al. Renal histologic changes and the outcome in patients with diabetic nephropathy. Nephrol Dial Transplant. 2015;30(2):257–66. https://doi.org/10.1093/ndt/gfu250.

    Article  CAS  PubMed  Google Scholar 

  11. Najafian B, Alpers CE, Fogo AB. Pathology of human diabetic nephropathy. Contrib Nephrol. 2011;170:36–47. https://doi.org/10.1159/000324942.

    Article  PubMed  Google Scholar 

  12. Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol. 2001;281(4):F579–96. https://doi.org/10.1152/ajprenal.2001.281.4.F579.

    Article  CAS  PubMed  Google Scholar 

  13. Breyer MD, Bottinger E, Brosius FC 3rd, Coffman TM, Harris RC, Heilig CW, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2005;16(1):27–45. https://doi.org/10.1681/ASN.2004080648.

    Article  PubMed  Google Scholar 

  14. Breyer MD, Qi Z, Tchekneva EE, Harris RC. Insight into the genetics of diabetic nephropathy through the study of mice. Curr Opin Nephrol Hypertens. 2008;17(1):82–6. https://doi.org/10.1097/MNH.0b013e3282f49cc9.

    Article  CAS  PubMed  Google Scholar 

  15. Brosius FC 3rd, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2009;20(12):2503–12. https://doi.org/10.1681/ASN.2009070721.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Azushima K, Gurley SB, Coffman TM. Modelling diabetic nephropathy in mice. Nat Rev Nephrol. 2018;14(1):48–56. https://doi.org/10.1038/nrneph.2017.142.

    Article  CAS  PubMed  Google Scholar 

  17. Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res. 2002;512(2–3):121–34.

    Article  CAS  PubMed  Google Scholar 

  18. Like AA, Appel MC, Williams RM, Rossini AA. Streptozotocin-induced pancreatic insulitis in mice. Morphologic and physiologic studies. Lab Invest. 1978;38(4):470–86.

    CAS  PubMed  Google Scholar 

  19. Betz B, Conway BR. An update on the use of animal models in diabetic nephropathy research. Curr DiabRep. 2016;16(2):18. https://doi.org/10.1007/s11892-015-0706-2.

    Article  CAS  Google Scholar 

  20. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325(5939):433. https://doi.org/10.1126/science.1172447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kitada M, Koya D, Sugimoto T, Isono M, Araki S, Kashiwagi A, et al. Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes. 2003;52(10):2603–14.

    Article  CAS  PubMed  Google Scholar 

  22. Brondum E, Nilsson H, Aalkjaer C. Functional abnormalities in isolated arteries from Goto-Kakizaki and streptozotocin-treated diabetic rat models. Horm Metab Res. 2005;37(Suppl 1):56–60. https://doi.org/10.1055/s-2005-861370.

    Article  CAS  PubMed  Google Scholar 

  23. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, et al. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes. 2005;54(9):2628–37.

    Article  CAS  PubMed  Google Scholar 

  24. Sugimoto H, Grahovac G, Zeisberg M, Kalluri R. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes. 2007;56(7):1825–33. https://doi.org/10.2337/db06-1226.

    Article  CAS  PubMed  Google Scholar 

  25. Nakayama T, Sato W, Kosugi T, Zhang L, Campbell-Thompson M, Yoshimura A, et al. Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. Am J Physiol Renal Physiol. 2009;296(2):F317–27. https://doi.org/10.1152/ajprenal.90450.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakayama T, Soma M, Takahashi Y, Izumi Y, Kanmatsuse K, Esumi M. Association analysis of CA repeat polymorphism of the endothelial nitric oxide synthase gene with essential hypertension in Japanese. Clin Genet. 1997;51(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  27. Arngrimsson R, Hayward C, Nadaud S, Baldursdottir A, Walker JJ, Liston WA, et al. Evidence for a familial pregnancy-induced hypertension locus in the eNOS-gene region. Am J Hum Genet. 1997;61(2):354–62. https://doi.org/10.1086/514843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yokoyama K, Tsukada T, Matsuoka H, Hara S, Yamada A, Kawaguchi Y. High accumulation of endothelial nitric oxide synthase (ecNOS): a gene polymorphism in patients with end-stage renal disease. Nephron. 1998;79(3):360–1. https://doi.org/10.1159/000045069.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimura M, Yasue H, Nakayama M, Shimasaki Y, Sumida H, Sugiyama S, et al. A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Hum Genet. 1998;103(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  30. Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, Shimasaki Y, Nakayama M, et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension. 1998;32(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  31. Nakagawa T, Sato W, Glushakova O, Heinig M, Clarke T, Campbell-Thompson M, et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol. 2007;18(2):539–50. https://doi.org/10.1681/ASN.2006050459.

    Article  CAS  PubMed  Google Scholar 

  32. Kanetsuna Y, Takahashi K, Nagata M, Gannon MA, Breyer MD, Harris RC, et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am J Pathol. 2007;170(5):1473–84. https://doi.org/10.2353/ajpath.2007.060481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu L, Su Y, Paueksakon P, Cheng H, Chen X, Wang H, et al. Integrin alpha1/Akita double-knockout mice on a Balb/c background develop advanced features of human diabetic nephropathy. Kidney Int. 2012;81(11):1086–97. https://doi.org/10.1038/ki.2011.474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mathews CE, Langley SH, Leiter EH. New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation. 2002;73(8):1333–6.

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D, et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest. 1999;103(1):27–37. https://doi.org/10.1172/JCI4431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshioka M, Kayo T, Ikeda T, Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997;46(5):887–94.

    Article  CAS  PubMed  Google Scholar 

  37. Ron D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest. 2002;109(4):443–5. https://doi.org/10.1172/JCI15020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haseyama T, Fujita T, Hirasawa F, Tsukada M, Wakui H, Komatsuda A, et al. Complications of IgA nephropathy in a non-insulin-dependent diabetes model, the Akita mouse. Tohoku J Exp Med. 2002;198(4):233–44.

    Article  CAS  PubMed  Google Scholar 

  39. Alpers CE, Hudkins KL. Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens. 2011;20(3):278–84. https://doi.org/10.1097/MNH.0b013e3283451901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM. Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol. 2006;290(1):F214–22. https://doi.org/10.1152/ajprenal.00204.2005.

    Article  CAS  PubMed  Google Scholar 

  41. Kakoki M, Kizer CM, Yi X, Takahashi N, Kim HS, Bagnell CR, et al. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. J Clin Invest. 2006;116(5):1302–9. https://doi.org/10.1172/JCI26958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi Y, Lo CS, Padda R, Abdo S, Chenier I, Filep JG, et al. Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci (Lond). 2015;128(10):649–63. https://doi.org/10.1042/CS20140329.

    Article  CAS  Google Scholar 

  43. Liu GC, Fang F, Zhou J, Koulajian K, Yang S, Lam L, et al. Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia. 2012;55(9):2522–32. https://doi.org/10.1007/s00125-012-2586-1.

    Article  CAS  PubMed  Google Scholar 

  44. Fang F, Bae EH, Hu A, Liu GC, Zhou X, Williams V, et al. Deletion of the gene for adiponectin accelerates diabetic nephropathy in the Ins2 (+/C96Y) mouse. Diabetologia. 2015;58(7):1668–78. https://doi.org/10.1007/s00125-015-3605-9.

    Article  CAS  PubMed  Google Scholar 

  45. Fujita H, Fujishima H, Morii T, Sakamoto T, Komatsu K, Hosoba M, et al. Modulation of renal superoxide dismutase by telmisartan therapy in C57BL/6-Ins2(Akita) diabetic mice. Hypertens Res. 2012;35(2):213–20. https://doi.org/10.1038/hr.2011.176.

    Article  CAS  PubMed  Google Scholar 

  46. Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes. 2006;55(9):2502–9. https://doi.org/10.2337/db05-0603.

    Article  CAS  PubMed  Google Scholar 

  47. Lee EY, Chung CH, Choi SO. Immunoglobulin A nephropathy in patients with non-insulin dependent diabetes mellitus. J Korean Med Sci. 1999;14(5):582–5. https://doi.org/10.3346/jkms.1999.14.5.582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng S, Noonan WT, Metreveli NS, Coventry S, Kralik PM, Carlson EC, et al. Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes. 2004;53(12):3248–57.

    Article  CAS  PubMed  Google Scholar 

  49. Carlson EC, Audette JL, Klevay LM, Nguyen H, Epstein PN. Ultrastructural and functional analyses of nephropathy in calmodulin-induced diabetic transgenic mice. Anat Rec. 1997;247(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  50. Carlson EC, Audette JL, Veitenheimer NJ, Risan JA, Laturnus DI, Epstein PN. Ultrastructural morphometry of capillary basement membrane thickness in normal and transgenic diabetic mice. Anat Rec A Discov Mol Cell Evol Biol. 2003;271(2):332–41. https://doi.org/10.1002/ar.a.10038.

    Article  PubMed  Google Scholar 

  51. Teiken JM, Audettey JL, Laturnus DI, Zheng S, Epstein PN, Carlson EC. Podocyte loss in aging OVE26 diabetic mice. Anat Rec (Hoboken). 2008;291(1):114–21. https://doi.org/10.1002/ar.20625.

    Article  Google Scholar 

  52. Tsunekawa S, Miura Y, Yamamoto N, Itoh Y, Ariyoshi Y, Senda T, et al. Systemic administration of pituitary adenylate cyclase-activating polypeptide maintains beta-cell mass and retards onset of hyperglycaemia in beta-cell-specific calmodulin-overexpressing transgenic mice. Eur J Endocrinol. 2005;152(5):805–11. https://doi.org/10.1530/eje.1.01909.

    Article  CAS  PubMed  Google Scholar 

  53. Tsunekawa S, Yamamoto N, Tsukamoto K, Itoh Y, Kaneko Y, Kimura T, et al. Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J Endocrinol. 2007;193(1):65–74. https://doi.org/10.1677/JOE-06-0148.

    Article  CAS  PubMed  Google Scholar 

  54. Xu J, Huang Y, Li F, Zheng S, Epstein PN. FVB mouse genotype confers susceptibility to OVE26 diabetic albuminuria. Am J Physiol Renal Physiol. 2010;299(3):F487–94. https://doi.org/10.1152/ajprenal.00018.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Epstein PN, Overbeek PA, Means AR. Calmodulin-induced early-onset diabetes in transgenic mice. Cell. 1989;58(6):1067–73.

    Article  CAS  PubMed  Google Scholar 

  56. Epstein PN, Ribar TJ, Decker GL, Yaney G, Means AR. Elevated beta-cell calmodulin produces a unique insulin secretory defect in transgenic mice. Endocrinology. 1992;130(3):1387–93. https://doi.org/10.1210/endo.130.3.1371447.

    Article  CAS  PubMed  Google Scholar 

  57. Yu W, Niwa T, Miura Y, Horio F, Teradaira S, Ribar TJ, et al. Calmodulin overexpression causes Ca(2+)-dependent apoptosis of pancreatic beta cells, which can be prevented by inhibition of nitric oxide synthase. Lab Invest. 2002;82(9):1229–39.

    Article  CAS  PubMed  Google Scholar 

  58. Yuzawa Y, Niki I, Kosugi T, Maruyama S, Yoshida F, Takeda M, et al. Overexpression of calmodulin in pancreatic beta cells induces diabetic nephropathy. J Am Soc Nephrol. 2008;19(9):1701–11. https://doi.org/10.1681/ASN.2006121358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng S, Carlson EC, Yang L, Kralik PM, Huang Y, Epstein PN. Podocyte-specific overexpression of the antioxidant metallothionein reduces diabetic nephropathy. J Am Soc Nephrol. 2008;19(11):2077–85. https://doi.org/10.1681/ASN.2007080967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Breyer MD. Stacking the deck for drug discovery in diabetic nephropathy: in search of an animal model. J Am Soc Nephrol. 2008;19(9):1623–4. https://doi.org/10.1681/ASN.2008070705.

    Article  PubMed  Google Scholar 

  61. Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, et al. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol. 2010;21(9):1533–42. https://doi.org/10.1681/ASN.2009121290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Clee SM, Attie AD. The genetic landscape of type 2 diabetes in mice. Endocr Rev. 2007;28(1):48–83. https://doi.org/10.1210/er.2006-0035.

    Article  CAS  PubMed  Google Scholar 

  63. Clee SM, Nadler ST, Attie AD. Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes. Am J Ther. 2005;12(6):491–8.

    Article  PubMed  Google Scholar 

  64. Betz B, Conway BR. Recent advances in animal models of diabetic nephropathy. Nephron Exp Nephrol. 2014;126(4):191–5. https://doi.org/10.1159/000363300.

    Article  CAS  PubMed  Google Scholar 

  65. Pichaiwong W, Hudkins KL, Wietecha T, Nguyen TQ, Tachaudomdach C, Li W, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol. 2013;24(7):1088–102. https://doi.org/10.1681/ASN.2012050445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2011;300(2):F301–10. https://doi.org/10.1152/ajprenal.00607.2010.

    Article  CAS  PubMed  Google Scholar 

  67. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–5.

    Article  CAS  PubMed  Google Scholar 

  68. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996;379(6566):632–5. https://doi.org/10.1038/379632a0.

    Article  CAS  PubMed  Google Scholar 

  69. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153(3740):1127–8.

    Article  CAS  PubMed  Google Scholar 

  70. Hummel KP, Coleman DL, Lane PW. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem Genet. 1972;7(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  71. Lee SM, Bressler R. Prevention of diabetic nephropathy by diet control in the db/db mouse. Diabetes. 1981;30(2):106–11.

    Article  CAS  PubMed  Google Scholar 

  72. Hong SW, Isono M, Chen S, Iglesias-De La Cruz MC, Han DC, Ziyadeh FN. Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol. 2001;158(5):1653–63.

    Article  CAS  PubMed  Google Scholar 

  73. Like AA, Lavine RL, Poffenbarger PL, Chick WL. Studies in the diabetic mutant mouse. VI. Evolution of glomerular lesions and associated proteinuria. Am J Pathol. 1972;66(2):193–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lubec B, Rokitansky A, Hayde M, Aufricht C, Wagner U, Mallinger WR, et al. Thiaproline reduces glomerular basement membrane thickness and collagen accumulation in the db/db mouse. Nephron. 1994;66(3):333–6. https://doi.org/10.1159/000187832.

    Article  CAS  PubMed  Google Scholar 

  75. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 2000;14(3):439–47.

    Article  CAS  PubMed  Google Scholar 

  76. Kitada M, Kume S, Imaizumi N, Koya D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes. 2011;60(2):634–43. https://doi.org/10.2337/db10-0386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol. 2003;284(6):F1138–44. https://doi.org/10.1152/ajprenal.00315.2002.

    Article  CAS  PubMed  Google Scholar 

  78. Mauer SM, Steffes MW, Brown DM. The kidney in diabetes. Am J Med. 1981;70(3):603–12.

    Article  CAS  PubMed  Google Scholar 

  79. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74(4):1143–55. https://doi.org/10.1172/JCI111523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Osterby R. A quantitative electron microscopic study of mesangial regions in glomeruli from patients with short term juvenile diabetes mellitus. Lab Invest. 1973;29(1):99–110.

    CAS  PubMed  Google Scholar 

  81. Steffes MW, Osterby R, Chavers B, Mauer SM. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes. 1989;38(9):1077–81.

    Article  CAS  PubMed  Google Scholar 

  82. Cohen MP, Sharma K, Jin Y, Hud E, Wu VY, Tomaszewski J, et al. Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. J Clin Invest. 1995;95(5):2338–45. https://doi.org/10.1172/JCI117926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ha TS, Barnes JL, Stewart JL, Ko CW, Miner JH, Abrahamson DR, et al. Regulation of renal laminin in mice with type II diabetes. J Am Soc Nephrol. 1999;10(9):1931–9.

    CAS  PubMed  Google Scholar 

  84. Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee J, et al. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol. 2000;11(1):25–38.

    CAS  PubMed  Google Scholar 

  85. Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA. 2000;97(14):8015–20. https://doi.org/10.1073/pnas.120055097.

    Article  CAS  PubMed  Google Scholar 

  86. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Invest. 2008;88(5):515–28. https://doi.org/10.1038/labinvest.2008.23.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17(10):2664–9. https://doi.org/10.1681/ASN.2006070798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Watanabe Y, Hotta N. [Tubulointerstitial injury in diabetes mellitus (including Armanni-Ebstein lesion)]. Ryoikibetsu Shokogun Shirizu.1997;(17 Pt 2):225–8.

    Google Scholar 

  89. Tomino Y. Lessons from the KK-Ay mouse, a spontaneous animal model for the treatment of human type 2 diabetic nephropathy. Nephrourol Mon. 2012;4(3):524–9. https://doi.org/10.5812/numonthly.1954.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, et al. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol. 2014;306(11):F1335–47. https://doi.org/10.1152/ajprenal.00509.2013.

    Article  CAS  PubMed  Google Scholar 

  91. Ito T, Tanimoto M, Yamada K, Kaneko S, Matsumoto M, Obayashi K, et al. Glomerular changes in the KK-Ay/Ta mouse: a possible model for human type 2 diabetic nephropathy. Nephrology (Carlton). 2006;11(1):29–35. https://doi.org/10.1111/j.1440-1797.2006.00543.x.

    Article  CAS  PubMed  Google Scholar 

  92. Matsumoto M, Tanimoto M, Gohda T, Aoki T, Murakoshi M, Yamada K, et al. Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK-Ay/Ta mice. Metab Clin Exp. 2008;57(5):691–7. https://doi.org/10.1016/j.metabol.2008.01.007.

    Article  CAS  PubMed  Google Scholar 

  93. Heinonen SE, Genove G, Bengtsson E, Hubschle T, Akesson L, Hiss K, et al. Animal models of diabetic macrovascular complications: key players in the development of new therapeutic approaches. J Diabetes Res. 2015;2015:404085. https://doi.org/10.1155/2015/404085.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shiota M, Printz RL. Diabetes in Zucker diabetic fatty rat. Methods Mol Biol. 2012;933:103–23. https://doi.org/10.1007/978-1-62703-068-7_8.

    Article  CAS  PubMed  Google Scholar 

  95. Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, et al. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet. 1996;13(1):18–9. https://doi.org/10.1038/ng0596-18.

    Article  CAS  PubMed  Google Scholar 

  96. Katsuda Y, Ohta T, Miyajima K, Kemmochi Y, Sasase T, Tong B, et al. Diabetic complications in obese type 2 diabetic rat models. Exp Anim. 2014;63(2):121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vora JP, Zimsen SM, Houghton DC, Anderson S. Evolution of metabolic and renal changes in the ZDF/Drt-fa rat model of type II diabetes. J Am Soc Nephrol. 1996;7(1):113–7.

    CAS  PubMed  Google Scholar 

  98. Takiyama Y, Harumi T, Watanabe J, Fujita Y, Honjo J, Shimizu N, et al. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism. Diabetes. 2011;60(3):981–92. https://doi.org/10.2337/db10-0655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41(11):1422–8.

    Article  CAS  PubMed  Google Scholar 

  100. Nagai N, Ito Y. Therapeutic effects of sericin on diabetic keratopathy in Otsuka Long-Evans Tokushima Fatty rats. World J Diabetes. 2013;4(6):282–9. https://doi.org/10.4239/wjd.v4.i6.282.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nagai N, Murao T, Ito Y, Okamoto N, Sasaki M. Enhancing effects of sericin on corneal wound healing in Otsuka Long-Evans Tokushima fatty rats as a model of human type 2 diabetes. Biol Pharm Bull. 2009;32(9):1594–9.

    Article  CAS  PubMed  Google Scholar 

  102. Lee EY, Kim GT, Hyun M, Kim S, Seok S, Choi R, et al. Peroxisome proliferator-activated receptor-delta activation ameliorates albuminuria by preventing nephrin loss and restoring podocyte integrity in type 2 diabetes. Nephrol Dial Transplant. 2012;27(11):4069–79. https://doi.org/10.1093/ndt/gfs358.

    Article  CAS  PubMed  Google Scholar 

  103. Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med. 1976;119(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  104. Ostenson CG, Khan A, Abdel-Halim SM, Guenifi A, Suzuki K, Goto Y, et al. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia. 1993;36(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  105. Yagihashi S, Goto Y, Kakizaki M, Kaseda N. Thickening of glomerular basement membrane in spontaneously diabetic rats. Diabetologia. 1978;15(4):309–12.

    Article  CAS  PubMed  Google Scholar 

  106. Feng B, Yan XF, Xue JL, Xu L, Wang H. The protective effects of alpha-lipoic acid on kidneys in type 2 diabetic Goto-Kakisaki rats via reducing oxidative stress. Int J Mol Sci. 2013;14(4):6746–56. https://doi.org/10.3390/ijms14046746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen S, Yang T, Liu F, Li H, Guo Y, Yang H, et al. Inflammatory factor-specific sumoylation regulates NF-kappaB signalling in glomerular cells from diabetic rats. Inflamm Res. 2014;63(1):23–31. https://doi.org/10.1007/s00011-013-0675-3.

    Article  CAS  PubMed  Google Scholar 

  108. Wang Y, Nie M, Lu Y, Wang R, Li J, Yang B, et al. Fucoidan exerts protective effects against diabetic nephropathy related to spontaneous diabetes through the NF-kappaB signaling pathway in vivo and in vitro. Int J Mol Med. 2015;35(4):1067–73. https://doi.org/10.3892/ijmm.2015.2095.

    Article  CAS  PubMed  Google Scholar 

  109. Kojima N, Slaughter TN, Paige A, Kato S, Roman RJ, Williams JM. Comparison of the development diabetic induced renal disease in strains of Goto-Kakizaki rats. J Diabetes Metab. 2013;Suppl 9(5):S9-005. https://doi.org/10.4172/2155-6156.S9-005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Akimoto T, Nakama K, Katsuta Y, Zhang XJ, Ohsuga M, Ishizaki M, et al. Characterization of a novel congenic strain of diabetic fatty (WBN/Kob-Lepr(fa)) rat. Biochem Biophys Res Commun. 2008;366(2):556–62. https://doi.org/10.1016/j.bbrc.2007.12.003.

    Article  CAS  PubMed  Google Scholar 

  111. Ohashi K, Kim JH, Hara H, Aso R, Akimoto T, Nakama K. WBN/Kob rats. A new spontaneously occurring model of chronic pancreatitis. Int J Pancreatol. 1990;6(4):231–47.

    CAS  PubMed  Google Scholar 

  112. Takagi Y, Kadowaki H, Kobayashi I, Ito K, Ito K, Shirai M, et al. Effects of high-sodium intake on systemic blood pressure and vascular responses in spontaneously diabetic WBN/Kob-Lepr(fa/fa) rats. Clin Exp Pharmacol Physiol. 2017;44(2):305–12. https://doi.org/10.1111/1440-1681.12700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagasaka, S., Shimizu, A. (2021). Experimental Animal Models of Diabetic Kidney Disease. In: Wada, T., Furuichi, K., Kashihara, N. (eds) Diabetic Kidney Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-9301-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9301-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9300-0

  • Online ISBN: 978-981-15-9301-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics