Skip to main content

Resource Utilization of Agricultural/Forestry Residues via Fractionation into Cellulose, Hemicellulose and Lignin

  • Chapter
  • First Online:
Advanced and Emerging Technologies for Resource Recovery from Wastes

Abstract

This chapter reviews advances in the fractionation of lignocellulosic biomass to its three main components, cellulose, hemicelluloses and lignin, as a pre-treatment process for resource utilization of agricultural/forestry residues for biofuels and bio-based chemicals/materials. Different pre-treatment methods such as physical, chemical, physio-chemical and biological processes are discussed with their advantages/disadvantages and challenges. Physical pre-treatments are considered eco-friendly methods as they do not require chemicals, but they have high energy consumption. Chemical methods are more popular owing to their high efficiency for almost all types of biomass. Among the chemical processes, the Kraft pulping and organosolv pulping methods have been widely used for biomass delignification and fractionation to produce lignocellulosic components (cellulose, hemicellulose and lignin). Kraft pulping is the most popular chemical pulping process applied on industrial scale, operating in water under a high pH condition with alkaline reagents. In contrast, organosolv pulping operates at mild conditions in organic solvents or their aqueous solution for fractionation of lignocellulosic biomass. Recently, ionic liquids have attracted a lot of attention as an alternative to volatile and unstable organic solvents for biomass fractionation, but they are associated with high cost, difficulty in recycling and reuse; thus, further investigation is required to make the process feasible for large scale application. Compared with other pre-treatment methods, the organosolv pre-treatment has many advantages such as high efficiency, mild operating conditions, easy solvent recovery and recycling, and relatively high purity of the biomass fractionation products. However, the inevitable loss and flammability of organic solvents are the main obstacles for industrial applications of these processes. Whereas, with the development of biorefinery, where the fractionation products (i.e., cellulose and lignin) could be valorized for the production of various high-value bioproducts, e.g., sodium carboxymethyl cellulose (CMC), phenol–formaldehyde adhesives, epoxy resins, and polyurethane foams, organosolv fractionation offers immense opportunities for resource utilization of agricultural/forestry residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. In: Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, pp 201–222

    Google Scholar 

  2. US Department of Energy (2006) Biomass basics—the facts about bioenergy

    Google Scholar 

  3. Bamdad S, Hawboldt H, MacQuarrie K (2018) A review on common adsorbents for acid gases removal: focus on biochar. Renew Sustain Energy Rev 81:1705–1720

    Google Scholar 

  4. Tian X, Rehmann L, Xu C, Fang Z (2016) Pretreatment of Eastern White Pine (Pinus strobes L.) for enzymatic hydrolysis and ethanol production by organic electrolyte solutions. ACS Sustain Chem Eng 4(5):2822–2829

    Google Scholar 

  5. Talebi Amiri M, Dick GR, Questell-Santiago YM, Luterbacher JS (2019) Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Nat Protoc 1–34

    Google Scholar 

  6. Shui T et al (2017) Synthesis of sodium carboxymethyl cellulose (CMC) using bleached crude cellulose fractionated from cornstalk. Biomass Bioenergy 105:51–58

    Google Scholar 

  7. Cheng S, Yuan Z, Leitch M, Anderson M, Xu C (2013) Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio. Ind Crops Prod 44:315–322

    Google Scholar 

  8. Ferdosian F, Yuan Z, Anderson M, Xu C (2016) Synthesis and characterization of hydrolysis lignin-based epoxy resins. Ind Crops Prod 91:295–301

    Google Scholar 

  9. Mahmood N, Yuan Z, Schmidt J, Tymchyshyn M, Xu C (2016) Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem 18:2385–2398

    Google Scholar 

  10. Dahmen N, Lewandowski I, Zibek S, Weidtmann A (2019) Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. GCB Bioenergy 11:107–117

    Google Scholar 

  11. Barkodia M, Dahiya S, Goyal S (2018) Pretreatment of lignocellulosic biomass for bioethanol production: a brief review. Res Rev J Agric Sci Technol 5(2):1–7

    Google Scholar 

  12. Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517

    Article  CAS  Google Scholar 

  13. Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 15(3):1615–1624

    Google Scholar 

  14. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–51

    Google Scholar 

  15. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559

    Article  CAS  Google Scholar 

  16. Aho A, Salmi T, Murzin D (2013) Catalytic pyrolysis of lignocellulosic biomass. In: The role of catalysis for the sustainable production of bio-fuels and bio-chemicals, pp 137–159

    Google Scholar 

  17. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  18. Baruah J et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:1–19

    Google Scholar 

  19. Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–689

    Google Scholar 

  20. Jȩdrzejczyk M, Soszka E, Czapnik M, Ruppert AM, Grams J (2019) Physical and chemical pretreatment of lignocellulosic biomass. In: Second and third generation of feedstocks: the evolution of biofuels, pp 143–196

    Google Scholar 

  21. Amin FR et al (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7(1):1–12

    Article  CAS  Google Scholar 

  22. Zheng J, Rehmann L (2014) Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15(10):18967–18984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lan W, Liu CF, Sun RC (2011) Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. J Agric Food Chem 59(16):8691–8701

    Article  CAS  PubMed  Google Scholar 

  24. Mohammed NI, Kabbashi N, Alade A (2008) Significance of agricultural residues in sustainable biofuel development. In: Agricultural waste and residues, pp 71–88

    Google Scholar 

  25. Hartman M (2008) Estimating the value of crop residues. Open Government Licence - Alberta

    Google Scholar 

  26. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011(1):1–17

    Google Scholar 

  27. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):1–19

    Article  CAS  Google Scholar 

  28. Chen H (2015) Lignocellulose biorefinery feedstock engineering. Woodhead Publishing

    Google Scholar 

  29. Jiménez L, Rodríguez A (2010) Valorization of agricultural residues by fractionation of their components. Open Agric J 4(1):125–134

    Article  CAS  Google Scholar 

  30. Fernández-Rodríguez J, Erdocia X, Hernández-Ramos F, Alriols MG, Labidi J (2019) Lignin separation and fractionation by ultrafiltration. In: Separation of functional molecules in food by membrane technology, pp 229–265

    Google Scholar 

  31. Hamaguchi M, Cardoso M, Vakkilainen E (2012) Alternative technologies for biofuels production in kraft pulp mills-potential and prospects. Energies 5(7):2288–2309

    Article  CAS  Google Scholar 

  32. Saeed HAM, Liu Y, Lucia LA, Chen H (2017) Suitable approach using agricultural residues for pulp and paper manufacturing. Nord Pulp Pap Res J 32(4):671–679

    Article  Google Scholar 

  33. Hurter RW, Byrd MV (2018) Pulping and TCF bleaching of Canadian wheat straw and oat straw. In: Pulping engineering and environmental recycling sustainability conference, PEERS 2018: technical solutions for today and beyond, pp 207–220

    Google Scholar 

  34. Madakadze IC, Radiotis T, Li J, Goel K, Smith DL (1999) Kraft pulping characteristics and pulp properties of warm season grasses. Bioresour Technol 69(1):75–85

    Article  CAS  Google Scholar 

  35. Yuan Z, Wen Y, Kapu NS, Beatson R, Mark Martinez D (2017) A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol. Biotechnol Biofuels 10(1):1–16

    Google Scholar 

  36. Buzala KP, Kalinowska H, Malachowska E, Boruszewski P, Krajewski K, Przybysz P (2019) The effect of lignin content in birch and beech kraft cellulosic pulps on simple sugar yields from the enzymatic hydrolysis of cellulose. Energies 12(15):1–11

    Article  CAS  Google Scholar 

  37. Solár R et al (2011) Alkaline and alkaline/oxidation pre-treatments of spruce wood (Picea Abies)—impact on the quality of kraft pulp. Bioresour Technol 102(2):1921–1927

    Article  CAS  PubMed  Google Scholar 

  38. Shui T (2016) Fractionation of cornstalk into cellulose and lignin for the production of sodium carboxymethyl cellulose (Thesis). The University of Western Ontario

    Google Scholar 

  39. Shui T, Feng S, Yuan Z, Kuboki T, Xu C (2016) Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids. Bioresour Technol 218:953–961

    Article  CAS  PubMed  Google Scholar 

  40. Jahan MS, Chowdhury DAN, Islam MK (2007) Atmospheric formic acid pulping and TCF bleaching of dhaincha (Sesbania Aculeata), kash (Saccharum Spontaneum) and banana stem (Musa Cavendish). Ind Crops Prod 26(3):324–331

    Article  CAS  Google Scholar 

  41. Dapía S, Santos V, Parajó JC (2002) Study of formic acid as an agent for biomass fractionation. Biomass Bioenergy 22(3):213–221

    Article  Google Scholar 

  42. Lam HQ, Le Bigot Y, Delmas M, Avignon GG (2001) Formic acid pulping of rice straw. Ind Crops Prod 14(1):65–71

    Article  CAS  Google Scholar 

  43. Xu F, Sun J-X, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crops Prod 23(2):180–193

    Article  CAS  Google Scholar 

  44. Snelders J et al (2014) Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour Technol 156:275–282

    Article  CAS  PubMed  Google Scholar 

  45. Kim GH, Um BH (2020) Fractionation and characterization of lignins from miscanthus via organosolv and soda pulping for biorefinery applications. Int J Biol Macromol 158:443–451

    Article  CAS  PubMed  Google Scholar 

  46. Jiang Z, He T, Li J, Hu C (2014) Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity. Green Chem 16(9):4257–4265

    Article  CAS  Google Scholar 

  47. Asawaworarit P, Daorattanachai P, Laosiripojana W, Sakdaronnarong C, Shotipruk A, Laosiripojana N (2019) Catalytic depolymerization of organosolv lignin from bagasse by carbonaceous solid acids derived from hydrothermal of lignocellulosic compounds. Chem Eng J 356:461–471

    Article  CAS  Google Scholar 

  48. Singh SK, Dhepe PL (2018) Experimental evidences for existence of varying moieties and functional groups in assorted crop waste derived organosolv lignins. Ind Crops Prod 119:144–151

    Google Scholar 

  49. Chotirotsukon C, Raita M, Champreda V, Laosiripojana N (2019) Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Ind Crops Prod 141:111753

    Google Scholar 

  50. Wang K et al (2012) Organosolv fractionation process with various catalysts for improving bioconversion of triploid poplar. Process Biochem 47(10):1503–1509

    Article  CAS  Google Scholar 

  51. Li H, Cai X, Wang Z, Xu C (2020) Cost-effective production of organosolv lignin from woody biomass using ethanol-water mixed solvent at mild conditions. J Supercrit Fluids 158:104745

    Article  CAS  Google Scholar 

  52. da Costa Lopes AM et al (2013) Pretreatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208

    Google Scholar 

  53. Zhang P, Dong SJ, Ma HH, Zhang BX, Wang YF, Hu XM (2015) Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind Crops Prod 76:688–696

    Article  CAS  Google Scholar 

  54. An YX, Zong MH, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171

    Article  CAS  PubMed  Google Scholar 

  55. Usmani Z et al (2020) Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol 304:123003

    Article  CAS  PubMed  Google Scholar 

  56. Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 22:1–24

    Article  CAS  Google Scholar 

  57. Cheng F, Sun J, Wang Z, Zhao X, Hu Y (2019) Organosolv fractionation and simultaneous conversion of lignocellulosic biomass in aqueous 1,4-butanediol/acidic ionic-liquids solution. Ind Crops Prod 138:111573

    Article  CAS  Google Scholar 

  58. Tan SSY et al (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11(3):339–434

    Article  CAS  Google Scholar 

  59. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–655

    Article  CAS  Google Scholar 

  60. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  CAS  PubMed  Google Scholar 

  61. Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13(11):3124–3136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Nazari .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazari, L., Xu, C.(., Ray, M.B. (2021). Resource Utilization of Agricultural/Forestry Residues via Fractionation into Cellulose, Hemicellulose and Lignin. In: Advanced and Emerging Technologies for Resource Recovery from Wastes. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9267-6_7

Download citation

Publish with us

Policies and ethics